📄 ex10_3.m
字号:
%
% In this example we investigate the stability of a
% BJT in common-base configuration as a function of
% the base inductance
%
% Copyright (c) 1999 by P.Bretchko and R.Ludwig
% "RF Circuit Design: Theory and Practice"
%
close all; % close all opened graphs
clear all; % clear all variables
figure;
Z0=50;
% oscillation frequency
f=2e9;
w=2*pi*f;
% transistor S-parameters at oscillation frequency
s_tr=[0.94*exp(j*174/180*pi),0.013*exp(-j*98/180*pi);1.9*exp(-j*28/180*pi),1.01*exp(-j*17/180*pi)];
s11=s_tr(1,1);
s12=s_tr(1,2);
s21=s_tr(2,1);
s22=s_tr(2,2);
% find the Z-parameters of the transistor
z_tr=S_to_Z(s_tr,Z0);
% attempt to add inductor to base in order to increase instability
L=(0:0.01:2)*1e-9;
Z_L=j*w*L;
z_L=[1,1;1,1];
N=length(L);
% create variables for the S_parameters of the transistor with the inductor
s11=zeros([1 N]);
s12=zeros([1 N]);
s21=zeros([1 N]);
s22=zeros([1 N]);
% Rollett stability factor
K=zeros([1 N]);
for n=1:N
z_total=z_tr+z_L*Z_L(n);
s_total=Z_to_S(z_total,Z0);
s11(n)=s_total(1,1);
s12(n)=s_total(1,2);
s21(n)=s_total(2,1);
s22(n)=s_total(2,2);
K(n)=(1-abs(s11(n))^2-abs(s22(n))^2+abs(det(s_total))^2)/2/abs(s12(n)*s21(n));
end;
close all;
plot(L/1e-9,K);
title('Stability factor of the transistor in common-base mode vs. base inductance');
xlabel('Base inductance L, nH');
ylabel('Rollett stability factor \itk')
axis([0 2 -1 -0.5]);
%print -deps 'fig10_14.eps'
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -