📄 gpcovar.m
字号:
function [cov, covf] = gpcovar(net, x)%GPCOVAR Calculate the covariance for a Gaussian Process.%% Description%% COV = GPCOVAR(NET, X) takes a Gaussian Process data structure NET% together with a matrix X of input vectors, and computes the% covariance matrix COV. The inverse of this matrix is used when% calculating the mean and variance of the predictions made by NET.%% [COV, COVF] = GPCOVAR(NET, X) also generates the covariance matrix% due to the covariance function specified by NET.COVARFN as calculated% by GPCOVARF.%% See also% GP, GPPAK, GPUNPAK, GPCOVARP, GPCOVARF, GPFWD, GPERR, GPGRAD%% Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'gp', x);if ~isempty(errstring); error(errstring);endndata = size(x, 1);% Compute prior covarianceif nargout >= 2 [covp, covf] = gpcovarp(net, x, x);else covp = gpcovarp(net, x, x);end% Add output noise variancecov = covp + (net.min_noise + exp(net.noise))*eye(ndata);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -