📄 gpcovarf.m
字号:
function covf = gpcovarf(net, x1, x2)%GPCOVARF Calculate the covariance function for a Gaussian Process.%% Description%% COVF = GPCOVARF(NET, X1, X2) takes a Gaussian Process data structure% NET together with two matrices X1 and X2 of input vectors, and% computes the matrix of the covariance function values COVF.%% See also% GP, GPCOVAR, GPCOVARP, GPERR, GPGRAD%% Copyright (c) Ian T Nabney (1996-2001)errstring = consist(net, 'gp', x1);if ~isempty(errstring); error(errstring);endif size(x1, 2) ~= size(x2, 2) error('Number of variables in x1 and x2 must be the same');endn1 = size(x1, 1);n2 = size(x2, 1);beta = diag(exp(net.inweights));% Compute the weighted squared distances between x1 and x2z = (x1.*x1)*beta*ones(net.nin, n2) - 2*x1*beta*x2' ... + ones(n1, net.nin)*beta*(x2.*x2)';switch net.covar_fn case 'sqexp' % Squared exponential covf = exp(net.fpar(1) - 0.5*z); case 'ratquad' % Rational quadratic nu = exp(net.fpar(2)); covf = exp(net.fpar(1))*((ones(size(z)) + z).^(-nu)); otherwise error(['Unknown covariance function ', net.covar_fn]); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -