📄 gpinit.m
字号:
function net = gpinit(net, tr_in, tr_targets, prior)%GPINIT Initialise Gaussian Process model.%% Description% NET = GPINIT(NET, TRIN, TRTARGETS) takes a Gaussian Process data% structure NET together with a matrix TRIN of training input vectors% and a matrix TRTARGETS of training target vectors, and stores them% in NET. These datasets are required if the corresponding inverse% covariance matrix is not supplied to GPFWD. This is important if the% data structure is saved and then reloaded before calling GPFWD. Each% row of TRIN corresponds to one input vector and each row of TRTARGETS% corresponds to one target vector.%% NET = GPINIT(NET, TRIN, TRTARGETS, PRIOR) additionally initialises% the parameters in NET from the PRIOR data structure which contains% the mean and variance of the Gaussian distribution which is sampled% from.%% See also% GP, GPFWD%% Copyright (c) Ian T Nabney (1996-2001)errstring = consist(net, 'gp', tr_in, tr_targets);if ~isempty(errstring); error(errstring);endif nargin >= 4 % Initialise weights at random if size(prior.pr_mean) == [1 1] w = randn(1, net.nwts).*sqrt(prior.pr_var) + ... repmat(prior.pr_mean, 1, net.nwts); else sig = sqrt(prior.index*prior.pr_var); w = sig'.*randn(1, net.nwts) + (prior.index*prior.pr_mean)'; end net = gpunpak(net, w);endnet.tr_in = tr_in;net.tr_targets = tr_targets;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -