📄 gpgrad.m
字号:
function g = gpgrad(net, x, t)%GPGRAD Evaluate error gradient for Gaussian Process.%% Description% G = GPGRAD(NET, X, T) takes a Gaussian Process data structure NET% together with a matrix X of input vectors and a matrix T of target% vectors, and evaluates the error gradient G. Each row of X% corresponds to one input vector and each row of T corresponds to one% target vector.%% See also% GP, GPCOVAR, GPFWD, GPERR%% Copyright (c) Ian T Nabney (1996-2001)errstring = consist(net, 'gp', x, t);if ~isempty(errstring); error(errstring);end% Evaluate derivatives with respect to each hyperparameter in turn.ndata = size(x, 1);[cov, covf] = gpcovar(net, x);cninv = inv(cov);trcninv = trace(cninv);cninvt = cninv*t;% Function parametersswitch net.covar_fn case 'sqexp' % Squared exponential gfpar = trace(cninv*covf) - cninvt'*covf*cninvt; case 'ratquad' % Rational quadratic beta = diag(exp(net.inweights)); gfpar(1) = trace(cninv*covf) - cninvt'*covf*cninvt; D2 = (x.*x)*beta*ones(net.nin, ndata) - 2*x*beta*x' ... + ones(ndata, net.nin)*beta*(x.*x)'; E = ones(size(D2)); L = - exp(net.fpar(2)) * covf .* log(E + D2); % d(cn)/d(nu) gfpar(2) = trace(cninv*L) - cninvt'*L*cninvt; otherwise error(['Unknown covariance function ', net.covar_fn]);end% Bias derivativendata = size(x, 1);fac = exp(net.bias)*ones(ndata);gbias = trace(cninv*fac) - cninvt'*fac*cninvt;% Noise derivativegnoise = exp(net.noise)*(trcninv - cninvt'*cninvt);% Input weight derivativesif strcmp(net.covar_fn, 'ratquad') F = (exp(net.fpar(2))*E)./(E + D2);endnparams = length(net.inweights);for l = 1 : nparams vect = x(:, l); matx = (vect.*vect)*ones(1, ndata) ... - 2.0*vect*vect' ... + ones(ndata, 1)*(vect.*vect)'; switch net.covar_fn case 'sqexp' % Squared exponential dmat = -0.5*exp(net.inweights(l))*covf.*matx; case 'ratquad' % Rational quadratic dmat = - exp(net.inweights(l))*covf.*matx.*F; otherwise error(['Unknown covariance function ', net.covar_fn]); end gw1(l) = trace(cninv*dmat) - cninvt'*dmat*cninvt;endg1 = [gbias, gnoise, gw1, gfpar];g1 = 0.5*g1;% Evaluate the prior contribution to the gradient.if isfield(net, 'pr_mean') w = gppak(net);
m = repmat(net.pr_mean, size(w)); if size(net.pr_mean) == [1 1] gprior = w - m; g2 = gprior/net.pr_var; else ngroups = size(net.pr_mean, 1); gprior = net.index'.*(ones(ngroups, 1)*w - m); g2 = (1./net.pr_var)'*gprior; endelse gprior = 0; g2 = 0;endg = g1 + g2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -