📄 netopt.m
字号:
function [net, options, varargout] = netopt(net, options, x, t, alg);%NETOPT Optimize the weights in a network model. %% Description%% NETOPT is a helper function which facilitates the training of% networks using the general purpose optimizers as well as sampling% from the posterior distribution of parameters using general purpose% Markov chain Monte Carlo sampling algorithms. It can be used with any% function that searches in parameter space using error and gradient% functions.%% [NET, OPTIONS] = NETOPT(NET, OPTIONS, X, T, ALG) takes a network% data structure NET, together with a vector OPTIONS of parameters% governing the behaviour of the optimization algorithm, a matrix X of% input vectors and a matrix T of target vectors, and returns the% trained network as well as an updated OPTIONS vector. The string ALG% determines which optimization algorithm (CONJGRAD, QUASINEW, SCG,% etc.) or Monte Carlo algorithm (such as HMC) will be used.%% [NET, OPTIONS, VARARGOUT] = NETOPT(NET, OPTIONS, X, T, ALG) also% returns any additional return values from the optimisation algorithm.%% See also% NETGRAD, BFGS, CONJGRAD, GRADDESC, HMC, SCG%% Copyright (c) Ian T Nabney (1996-2001)optstring = [alg, '(''neterr'', w, options, ''netgrad'', net, x, t)'];% Extract weights from network as single vectorw = netpak(net);% Carry out optimisation[s{1:nargout}] = eval(optstring);w = s{1};if nargout > 1 options = s{2}; % If there are additional arguments, extract them nextra = nargout - 2; if nextra > 0 for i = 1:nextra varargout{i} = s{i+2}; end endend% Pack the weights back into the networknet = netunpak(net, w);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -