📄 demgp.m
字号:
%DEMGP Demonstrate simple regression using a Gaussian Process.%% Description% The problem consists of one input variable X and one target variable% T. The values in X are chosen in two separated clusters and the% target data is generated by computing SIN(2*PI*X) and adding Gaussian% noise. Two Gaussian Processes, each with different covariance% functions are trained by optimising the hyperparameters using the% scaled conjugate gradient algorithm. The final predictions are% plotted together with 2 standard deviation error bars.%% See also% GP, GPERR, GPFWD, GPGRAD, GPINIT, SCG%% Copyright (c) Ian T Nabney (1996-2001)% Find out if flops is available (i.e. pre-version 6 Matlab)v = version;if (str2num(strtok(v, '.')) >= 6) flops_works = logical(0);else flops_works = logical(1);endrandn('state', 42);x = [0.1 0.15 0.2 0.25 0.65 0.7 0.75 0.8 0.85 0.9]';ndata = length(x);t = sin(2*pi*x) + 0.05*randn(ndata, 1);xtest = linspace(0, 1, 50)';clcdisp('This demonstration illustrates the use of a Gaussian Process')disp('model for regression problems. The data is generated from a noisy')disp('sine function.')disp(' ')disp('Press any key to continue.')pauseflops(0);% Initialise the parameters.net = gp(1, 'sqexp');prior.pr_mean = 0;prior.pr_var = 1;net = gpinit(net, x, t, prior);clcdisp('The first GP uses the squared exponential covariance function.')disp('The hyperparameters are initialised by sampling from a Gaussian with a')disp(['mean of ', num2str(prior.pr_mean), ' and variance ', ... num2str(prior.pr_var), '.'])disp('After initializing the network, we train it using the scaled conjugate')disp('gradients algorithm for 20 cycles.')disp(' ')disp('Press any key to continue')pause% Now train to find the hyperparameters.options = foptions;options(1) = 1; % Display training error valuesoptions(14) = 20;flops(0)[net, options] = netopt(net, options, x, t, 'scg');if flops_works sflops = flops;enddisp('The second GP uses the rational quadratic covariance function.')disp('The hyperparameters are initialised by sampling from a Gaussian with a')disp(['mean of ', num2str(prior.pr_mean), ' and variance ', num2str(prior.pr_var)])disp('After initializing the network, we train it using the scaled conjugate')disp('gradients algorithm for 20 cycles.')disp(' ')disp('Press any key to continue')pauseflops(0)net2 = gp(1, 'ratquad');net2 = gpinit(net2, x, t, prior);flops(0)[net2, options] = netopt(net2, options, x, t, 'scg');if flops_works rflops = flops;enddisp(' ')disp('Press any key to continue')disp(' ')pauseclcfprintf(1, 'For squared exponential covariance function,');if flops_works fprintf(1, 'flops = %d', sflops);endfprintf(1, '\nfinal hyperparameters:\n')format_string = strcat(' bias:\t\t\t%10.6f\n noise:\t\t%10.6f\n', ... ' inverse lengthscale:\t%10.6f\n vertical scale:\t%10.6f\n');fprintf(1, format_string, ... exp(net.bias), exp(net.noise), exp(net.inweights(1)), exp(net.fpar(1)));fprintf(1, '\n\nFor rational quadratic covariance function,');if flops_works fprintf(1, 'flops = %d', rflops);endfprintf(1, '\nfinal hyperparameters:\n')format_string = [format_string ' cov decay order:\t%10.6f\n'];fprintf(1, format_string, ... exp(net2.bias), exp(net2.noise), exp(net2.inweights(1)), ... exp(net2.fpar(1)), exp(net2.fpar(2)));disp(' ')disp('Press any key to continue')pausedisp(' ')disp('Now we plot the data, underlying function, model outputs and two')disp('standard deviation error bars on a single graph to compare the results.')disp(' ')disp('Press any key to continue.')pausecn = gpcovar(net, x); cninv = inv(cn);[ytest, sigsq] = gpfwd(net, xtest, cninv);sig = sqrt(sigsq);fh1 = figure;hold onplot(x, t, 'ok');xlabel('Input')ylabel('Target')fplot('sin(2*pi*x)', [0 1], '--m');plot(xtest, ytest, '-k');plot(xtest, ytest+(2*sig), '-b', xtest, ytest-(2*sig), '-b');axis([0 1 -1.5 1.5]);title('Squared exponential covariance function')legend('data', 'function', 'GP', 'error bars');hold offcninv2 = inv(gpcovar(net2, x));[ytest2, sigsq2] = gpfwd(net2, xtest, cninv2);sig2 = sqrt(sigsq2);fh2 = figure;hold onplot(x, t, 'ok');xlabel('Input')ylabel('Target')fplot('sin(2*pi*x)', [0 1], '--m');plot(xtest, ytest2, '-k');plot(xtest, ytest2+(2*sig2), '-b', xtest, ytest2-(2*sig2), '-b');axis([0 1 -1.5 1.5]);title('Rational quadratic covariance function')%legend('data', 'function', 'GP', 'error bars');hold offdisp(' ')disp('Press any key to end.')pauseclose(fh1);close(fh2);clear all;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -