📄 ga.cpp
字号:
#pragma once
#include "ga.h"
using namespace std;
//参数设置函数定义
void CGA::preSet(const vector<vector<int> >& mapDist,float _pcross,float _pmutation,int _popsize,int _maxgen,int _evolveWay)
{
//设置参数
pcross = _pcross;
popsize = _popsize;
popsize = _popsize;
maxgen = _maxgen;
evolveWay = _evolveWay;
lchrom = mapDist.size();
genes.resize(lchrom);
max_var = 0;
for(int i=0;i<lchrom;++i)
{
genes[i].ID = i;
for(int j=0;j<lchrom;++j)
{
genes[i].linkCost[&genes[j]] = mapDist[i][j];
if( mapDist[i][j] > max_var)
max_var = mapDist[i][j];
}
}
}
//遗传算法启动函数定义
pair<vector<int>,int> CGA::start()
{
initpop(oldpop); //产生初始种群
//通过不断进化,直到达到最大世代数
int best; //最优染色体编号
for(gen = 0;gen<maxgen;gen++)
{
generation(oldpop,newpop); //从当前种群产生新种群
oldpop.pop_chrom.swap(newpop.pop_chrom);
oldpop.sumfitness = newpop.sumfitness;
newpop.pop_chrom.clear();
}
best = chooseBest(oldpop); //最佳染色体
pair<vector<int>,int> result; //最优结果
for(int i=0;i<lchrom;++i)
result.first.push_back(oldpop.pop_chrom[best].chrom_gene[i]->ID);
result.second = oldpop.pop_chrom[best].varible;
///////////////////////////////////////////////////////////////////////////////
////////////////////////// 改动 ////////////////////
return result;
}
//产生一个随机整数(在[low,high)区间上)
inline int CGA::randomInt(int low,int high)
{
if(low==high)
return low;
return low+rand()%(high-low);
}
//计算一条染色体的个体适应度
inline void CGA::chromCost(Chrom& chr)
{
float sum=0;
for(int i=0;i<lchrom;++i)
{
sum += (chr.chrom_gene[i])->linkCost[chr.chrom_gene[i+1]];
}
sum += (chr.chrom_gene.front())->linkCost[chr.chrom_gene.back()];
chr.varible = sum;
chr.fitness = max_var*(lchrom) - chr.varible;
}
//计算一个种群的个体适应度之和
inline void CGA::popCost(Pop &pop)
{
float sum=0;
for(int i=0;i<popsize;++i)
{
sum+=pop.pop_chrom[i].fitness;
}
pop.sumfitness = sum;
}
//随机初始化一条染色体
inline void CGA::initChrom(Chrom& chr)
{
vector<int> tmp(lchrom);
for(int i=0;i<lchrom;i++)
tmp[i]=i;
int choose;
while(tmp.size()>1)
{
choose = randomInt(0,tmp.size());
chr.chrom_gene.push_back(&genes[tmp[choose]]);
tmp.erase(tmp.begin()+choose);
}
chr.chrom_gene.push_back(&genes[tmp[0]]);
chromCost(chr);
}
//随机初始化种群
inline void CGA::initpop(Pop& pop)
{
pop.pop_chrom.reserve(popsize);
Chrom tmp;
tmp.chrom_gene.reserve(lchrom);
for(int i=0;i<popsize;i++)
{
initChrom(tmp);
pop.pop_chrom.push_back(tmp);
tmp.chrom_gene.clear();
}
popCost(pop);
}
//轮盘赌选择,返回种群中被选择的个体编号
inline int CGA::selectChrom(const Pop& pop)
{
float sum = 0;
float pick = float(randomInt(0,1000))/1000;
int i = 0;
if(pop.sumfitness!=0)
{
while(1)
{
sum += pop.pop_chrom[i].fitness/pop.sumfitness;
++i;
if( (sum > pick) || i==pop.pop_chrom.size())
return i-1;
}
}
else
return randomInt(0,pop.pop_chrom.size());
}
//精英策略,返回最优秀的一条染色体
inline int CGA::chooseBest(const Pop& pop)
{
int choose = 0;
float best = 0;
for(int i = 0;i< pop.pop_chrom.size();++i)
{
if(pop.pop_chrom[i].fitness > best)
{
best = pop.pop_chrom[i].fitness;
choose = i;
}
}
return choose;
}
//染色体交叉操作,由两个父代产生两个子代( 顺序交叉 OX )
inline void CGA::crossover(Chrom& parent1,Chrom& parent2,Chrom& child1,Chrom& child2)
{
child1.chrom_gene.resize(lchrom);
child2.chrom_gene.resize(lchrom);
vector<Gene*>::iterator v_iter,p1_beg,p2_beg,c1_beg,c2_beg,p1_end,p2_end,c1_end,c2_end;
p1_beg = parent1.chrom_gene.begin();
p2_beg = parent2.chrom_gene.begin();
c1_beg = child1.chrom_gene.begin();
c2_beg = child2.chrom_gene.begin();
p1_end = parent1.chrom_gene.end();
p2_end = parent2.chrom_gene.end();
c1_end = child1.chrom_gene.end();
c2_end = child2.chrom_gene.end();
vector<Gene*> v1(parent2.chrom_gene), v2(parent1.chrom_gene); //用于交叉的临时表
//随机选择两个交叉点
int pick1 = randomInt(1,lchrom-1);
int pick2 = randomInt(pick1,lchrom-1);
int dist = lchrom-1-pick2; //第二交叉点到尾部的距离
//子代保持两交叉点间的基因不变
copy(p1_beg+pick1, p1_beg+pick2+1, c1_beg+pick1);
copy(p2_beg+pick1, p2_beg+pick2+1, c2_beg+pick1);
//循环移动表中元素
rotate(v1.begin(), v1.begin()+pick2+1,v1.end());
rotate(v2.begin(), v2.begin()+pick2+1,v2.end());
//从表中除去父代已有的元素
for(v_iter = p1_beg+pick1; v_iter!=p1_beg+pick2+1; ++v_iter)
remove(v1.begin(),v1.end(),*v_iter);
for(v_iter = p2_beg+pick1; v_iter!=p2_beg+pick2+1; ++v_iter)
remove(v2.begin(),v2.end(),*v_iter);
//把表中元素复制到子代中
copy(v1.begin(), v1.begin()+dist, c1_beg+pick2+1);
copy(v1.begin()+dist, v1.begin()+dist+pick1, c1_beg);
copy(v2.begin(), v2.begin()+dist, c2_beg+pick2+1);
copy(v2.begin()+dist, v2.begin()+dist+pick1, c2_beg);
}
//染色体变异操作,随机交换两个基因
inline void CGA::mutation(Chrom& chr)
{
vector<Gene*>::iterator beg = chr.chrom_gene.begin();
int pick1,pick2;
pick1 = randomInt(0,lchrom);
do{
pick2 =randomInt(0,lchrom);
}while(pick1==pick2);
iter_swap(beg+pick1, beg+pick2);
}
//世代进化(由当前种群产生新种群)
void CGA::generation(Pop& oldpop,Pop& newpop)
{
newpop.pop_chrom.resize(popsize);
int mate1,mate2,j;
float pick;
float tmp;
Chrom gene1,gene2,tmp1,tmp2;
gene1.chrom_gene.resize(lchrom);
gene2.chrom_gene.resize(lchrom);
tmp1.chrom_gene.resize(lchrom);
tmp2.chrom_gene.resize(lchrom);
//将最佳染色体放入下一代
mate1 = chooseBest(oldpop);
newpop.pop_chrom[0] = oldpop.pop_chrom[mate1];
j = 1;
//产生两条新染色体
do{
int count = 0;
mate1 = selectChrom(oldpop);
mate2 = selectChrom(oldpop);
pick = float(randomInt(0,1000))/1000;
gene1= oldpop.pop_chrom[mate1];
gene2= oldpop.pop_chrom[mate1];
if(pick < pcross) //交叉操作
{
if(evolveWay==1)
{
crossover(oldpop.pop_chrom[mate1],oldpop.pop_chrom[mate2],newpop.pop_chrom[j],newpop.pop_chrom[j+1]);
chromCost(newpop.pop_chrom[j]); //计算适应度
chromCost(newpop.pop_chrom[j+1]);
}
else if(evolveWay==2) //强迫进化
{
int count = 0;
bool flag1 = false;
bool flag2 = false;
while(1)
{
crossover(oldpop.pop_chrom[mate1],oldpop.pop_chrom[mate2],tmp1,tmp2);
chromCost(tmp1); //计算适应度
chromCost(tmp2);
if(tmp1.fitness > gene1.fitness)
{
gene1 = tmp1;
flag1 = true;
}
if(tmp2.fitness > gene2.fitness)
{
gene2 = tmp2;
flag2 = true;
}
if((flag1==true && flag2==true) || count> 31) //当子代都比父代优秀或寻找次数超过n次,跳出
{
newpop.pop_chrom[j] = gene1;
newpop.pop_chrom[j+1] = gene2;
break;
}
count++;
}
}
}
else
{
newpop.pop_chrom[j].chrom_gene = oldpop.pop_chrom[mate1].chrom_gene;
newpop.pop_chrom[j+1].chrom_gene = oldpop.pop_chrom[mate2].chrom_gene;
chromCost(newpop.pop_chrom[j]);
chromCost(newpop.pop_chrom[j+1]);
}
pick = float(randomInt(0,1000))/1000;
if(pick < pmutation) //变异操作
{
if(evolveWay==1)
{
mutation(newpop.pop_chrom[j]);
chromCost(newpop.pop_chrom[j]); //计算适应度
}
else if(evolveWay==2) //强迫进化
{
int count = 0;
tmp = newpop.pop_chrom[j].fitness;
do{
mutation(newpop.pop_chrom[j]);
chromCost(newpop.pop_chrom[j]); //计算适应度
count++;
}while(tmp > newpop.pop_chrom[j].fitness && count < 20); //当子代比父代优秀或寻找次数超过n次,跳出
}
}
pick = float(randomInt(0,1000))/1000;
if(pick < pmutation) //变异操作
{
if(evolveWay==1)
{
mutation(newpop.pop_chrom[j+1]);
chromCost(newpop.pop_chrom[j+1]); //计算适应度
}
else if(evolveWay==2) //强迫进化
{
int count = 0;
tmp = newpop.pop_chrom[j+1].fitness;
do{
mutation(newpop.pop_chrom[j+1]);
chromCost(newpop.pop_chrom[j+1]); //计算适应度
count++;
}while(tmp > newpop.pop_chrom[j+1].fitness && count < 20); //当子代比父代优秀或寻找次数超过n次,跳出
}
}
j += 2;
}while(j < popsize-1);
popCost(newpop); //计算新种群的适应度之和
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -