📄 accrho.f90
字号:
subroutine accrho(icplexwf,ndat,n1,n2,n3,nd1,nd2,nd3proc,&& max1,max2,max3,m1,m2,m3,md1,md2proc,md3,nproc,iproc,zf,rho,weight)! Accumulates the real space density rho from the ndat wavefunctions zf! by transforming zf into real space and adding all the amplitudes squared! INPUT:! ZF: input array (note the switch of i2 and i3)! real(F(i1,i3,i2,idat))=ZF(1,i1,i3,i2,idat)! imag(F(i1,i3,i2,idat))=ZF(2,i1,i3,i2,idat)! max1 is positive or zero ; m1 >=max1+1! i1= 1... max1+1 corresponds to positive and zero wavevectors 0 ... max1! then, if m1 > max1+1, one has min1=max1-m1+1 and! i1= max1+2 ... m1 corresponds to negative wavevectors min1 ... -1! i2 and i3 have a similar definition of range! idat=1,ndat! md1,md2,md3: Dimension of ZF! md2proc=((md2-1)/nproc)+1 ! maximal number of small box 2nd dim slices for one proc! OUTPUT:! RHOoutput(i1,i2,i3) = RHOinput(i1,i2,i3) + sum on idat of (FFT(ZF))**2 *weight! i1=1,n1 , i2=1,n2 , i3=1,n3 ! nproc: number of processors used as returned by MPI_COMM_SIZE! iproc: [0:nproc-1] number of processor as returned by MPI_COMM_RANK! n1,n2,n3: logical dimension of the transform. As transform lengths ! most products of the prime factors 2,3,5 are allowed.! The detailed table with allowed transform lengths can ! be found in subroutine CTRIG! nd1,nd2,nd3: Dimension of RHO! nd3proc=((nd3-1)/nproc)+1 ! maximal number of big box 3rd dim slices for one proc!! PERFORMANCE CONSIDERATIONS:! The maximum number of processors that can reasonably be used is max(n2/2,n3/2)!! It is very important to find the optimal ! value of NCACHE. NCACHE determines the size of the work array ZW, that! has to fit into cache. It has therefore to be chosen to equal roughly ! half the size of the physical cache in units of real*8 numbers.! The optimal value of ncache can easily be determined by numerical ! experimentation. A too large value of ncache leads to a dramatic ! and sudden decrease of performance, a too small value to a to a ! slow and less dramatic decrease of performance. If NCACHE is set ! to a value so small, that not even a single one dimensional transform ! can be done in the workarray zw, the program stops with an error message.!! RESTRICTIONS on USAGE! Copyright (C) 2002-2005 Stefan Goedecker, CEA Grenoble! This file is distributed under the terms of the! GNU General Public License, see http://www.gnu.org/copyleft/gpl.txt . implicit real*8 (a-h,o-z)# if defined MPI_FFT include 'mpif.h'# endif! real space input integer, parameter :: ddp = kind(1.d0) REAL(DDP), DIMENSION(nd1,nd2,nd3proc) :: rho REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:) :: rhopart! Fourier space output REAL(DDP), DIMENSION(2,md1,md3,md2proc,ndat) :: zf! weight for the density accumulation REAL(DDP), DIMENSION(ndat) :: weight! work arrays for transpositions REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:) :: zt! work arrays for MPI REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:,:) :: zmpi1 REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:,:) :: zmpi2! cache work array REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:) :: zw! FFT work arrays REAL(DDP), ALLOCATABLE, DIMENSION(:,:) :: trig1,trig2,trig3 INTEGER, ALLOCATABLE, DIMENSION(:) :: after1,now1,before1, & after2,now2,before2,after3,now3,before3!$ interface!$ integer ( kind=4 ) function omp_get_num_threads ( )!$ end function omp_get_num_threads!$ end interface!$ interface!$ integer ( kind=4 ) function omp_get_thread_num ( )!$ end function omp_get_thread_num!$ end interface write(6,*)' accrho : enter '! find cache size that gives optimal performance on machine ncache=4*1024 if (ncache/(4*max(n1,n2,n3)).lt.1) then write(6,*) & ' ncache has to be enlarged to be able to hold at' // & 'least one 1-d FFT of each size even though this will' // & 'reduce the performance for shorter transform lengths' stop endif lock=0!$omp parallel default(private) &!$omp shared(ndat,n1,n2,n3,nd1,nd2,nd3proc,md1,md2proc,md3,iproc,nproc,ncache,rho,zf,lock,weight)&!$omp shared(max1,max2,max3,m1,m2,m3,icplexwf) iam=0 npr=1!$ iam=omp_get_thread_num()!$ npr=omp_get_num_threads()! Effective m1 and m2 (complex-to-complex or real-to-complex) n1eff=n1 ; m2eff=m2 ; m1zt=n1 if(icplexwf==1)then n1eff=(n1+1)/2 ; m2eff=m2/2+1 ; m1zt=2*(n1/2+1) endif lzt=m2eff if (mod(m2eff,2).eq.0) lzt=lzt+1 if (mod(m2eff,4).eq.0) lzt=lzt+1 nnd3=nd3proc*nproc ! maximal number of big box 3rd dim slices for all procs!$omp critical allocate(trig1(2,2048),after1(7),now1(7),before1(7), & trig2(2,2048),after2(7),now2(7),before2(7), & trig3(2,2048),after3(7),now3(7),before3(7), & zw(2,ncache/4,2),zt(2,lzt,m1zt), & zmpi2(2,md1,md2proc,nnd3)) if (nproc.gt.1) allocate(zmpi1(2,md1,md2proc,nnd3)) if (npr.gt.1) allocate(rhopart(nd1,nd2,nd3proc))!$omp end critical if (npr.gt.1) rhopart(:,:,:)=0.0d0 call ctrig(n3,trig3,after3,before3,now3,1,ic3) call ctrig(n1,trig1,after1,before1,now1,1,ic1) call ctrig(n2,trig2,after2,before2,now2,1,ic2)!$omp do do 12345,idat=1,ndat! transform along z axis! input: I1,I3,J2,(Jp2) lot=ncache/(4*n3) do 3333,j2=1,md2proc if (iproc*md2proc+j2.le.m2eff) then do 3000,i1=1,m1,lot ma=i1 mb=min(i1+(lot-1),m1) n1dfft=mb-ma+1! input: I1,I3,J2,(Jp2) call fill_cent(md1,md3,lot,n1dfft,max3,m3,n3,zf(1,i1,1,j2,idat),zw(1,1,1)) inzee=1 do i=1,ic3 call fftstp(lot,n1dfft,n3,lot,n3,zw(1,1,inzee),zw(1,1,3-inzee), & trig3,after3(i),now3(i),before3(i),1) inzee=3-inzee enddo! input: I1,i3,J2,(Jp2) call scramble(i1,j2,lot,n1dfft,md1,n3,md2proc,nnd3,zw(1,1,inzee),zmpi2)! output: I1,J2,i3,(Jp2)3000 continue endif3333 continue! Interprocessor data transposition! input: I1,J2,j3,jp3,(Jp2) if (nproc.gt.1) then11 continue!$omp flush(lock) if (mod(lock,npr).ne.iam) goto 11# if defined MPI_FFT call MPI_ALLTOALL(zmpi2,md1*md2proc*nd3proc, & MPI_double_precision, & zmpi1,md1*md2proc*nd3proc, & MPI_double_precision,MPI_COMM_WORLD,ierr)# endif lock=lock+1 !$omp flush(lock) ! output: I1,J2,j3,Jp2,(jp3) endif!DEBUG! write(6,*)' zmpi2 ='! do i3=1,nnd3! do i2=1,m2eff! do i1=1,md1! write(6, '(3i4,2es16.6)')i1,i2,i3,zmpi2(1:2,i1,i2,i3)! enddo! enddo! enddo! stop!ENDDEBUG do 1212,j3=1,nd3proc if (iproc*nd3proc+j3.le.n3) then Jp2st=1 J2st=1! transform along x axis lot=ncache/(4*n1) do 1000,j=1,m2eff,lot ma=j mb=min(j+(lot-1),m2eff) n1dfft=mb-ma+1! input: I1,J2,j3,Jp2,(jp3) if (nproc.eq.1) then call mpiswitch_cent(j3,n1dfft,Jp2st,J2st,lot,max1,md1,m1,n1,&& md2proc,nd3proc,nproc,zmpi2,zw(1,1,1)) else call mpiswitch_cent(j3,n1dfft,Jp2st,J2st,lot,max1,md1,m1,n1,&& md2proc,nd3proc,nproc,zmpi1,zw(1,1,1)) endif! output: J2,Jp2,I1,j3,(jp3)! input: I2,I1,j3,(jp3) inzee=1 do i=1,ic1-1 call fftstp(lot,n1dfft,n1,lot,n1,zw(1,1,inzee),zw(1,1,3-inzee), & trig1,after1(i),now1(i),before1(i),1) inzee=3-inzee enddo i=ic1 call fftstp(lot,n1dfft,n1,lzt,m1zt,zw(1,1,inzee),zt(1,j,1), & trig1,after1(i),now1(i),before1(i),1)! output: I2,i1,j3,(jp3)1000 continue! transform along y axis lot=ncache/(4*n2) if(icplexwf==1)then if(mod(lot,2).ne.0)lot=lot+1 ! needed to introduce jeff endif do 2000,j=1,n1eff,lot ma=j mb=min(j+(lot-1),n1eff) n1dfft=mb-ma+1 jeff=j includelast=1 if(icplexwf==1)then jeff=2*j-1 includelast=1 if(mb==n1eff .and. n1eff*2/=n1)includelast=0 endif ! input: I2,i1,j3,(jp3) if(icplexwf==2)then call switch_cent(n1dfft,max2,m2,n2,lot,n1,lzt,zt(1,1,j),zw(1,1,1)) else call switchreal_cent(includelast,n1dfft,max2,n2,lot,m1zt,lzt,zt(1,1,jeff),zw(1,1,1)) endif! output: i1,I2,j3,(jp3) inzee=1 do i=1,ic2 call fftstp(lot,n1dfft,n2,lot,n2,zw(1,1,inzee),zw(1,1,3-inzee), & trig2,after2(i),now2(i),before2(i),1) inzee=3-inzee enddo!Accumulate if (npr.eq.1) then call addrho(icplexwf,includelast,nd1,nd2,n2,lot,n1dfft,&& zw(1,1,inzee),rho(jeff,1,j3),weight(idat)) else call addrho(icplexwf,includelast,nd1,nd2,n2,lot,n1dfft,&& zw(1,1,inzee),rhopart(jeff,1,j3),weight(idat)) endif2000 continue! output: i1,i2,j3,(jp3)!DEBUG! write(6,*)' j3=1, rho ='! do i1=1,n1! do i2=1,n2! write(6, '(2i4,2es16.6)')i1,i2,rho(i1,i2,j3)! enddo! enddo ! stop!ENDDEBUG endif1212 continue12345 continue!$omp enddo!$omp critical! Sum total density from the partial densities per thread if (npr.gt.1) then do 644, i3=1,nd3proc j3=iproc*nd3proc+i3 if (j3.le.n3) then do 643, i2=1,n2 do 643, i1=1,n1 rho(i1,i2,i3)=rho(i1,i2,i3)+rhopart(i1,i2,i3)643 continue endif644 continue endif!$omp end critical deallocate(trig1,after1,now1,before1, & trig2,after2,now2,before2, & trig3,after3,now3,before3, & zmpi2,zw,zt) if (nproc.gt.1) deallocate(zmpi1) if (npr.gt.1) deallocate(rhopart)!$omp end parallel write(6,*)' accrho : exit ' return end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -