⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 accrho.f90

📁 基于linux操作下的fortran快速付立变换的程序
💻 F90
字号:
        subroutine accrho(icplexwf,ndat,n1,n2,n3,nd1,nd2,nd3proc,&&        max1,max2,max3,m1,m2,m3,md1,md2proc,md3,nproc,iproc,zf,rho,weight)! Accumulates the real space density rho from the ndat wavefunctions zf! by transforming zf into real space and adding all the amplitudes squared!	INPUT:!          ZF: input array (note the switch of i2 and i3)!		real(F(i1,i3,i2,idat))=ZF(1,i1,i3,i2,idat)!		imag(F(i1,i3,i2,idat))=ZF(2,i1,i3,i2,idat)!          max1 is positive or zero ; m1 >=max1+1!          i1= 1... max1+1 corresponds to positive and zero wavevectors 0 ... max1!          then, if m1 > max1+1, one has min1=max1-m1+1 and!          i1= max1+2 ... m1 corresponds to negative wavevectors min1 ... -1!          i2 and i3 have a similar definition of range!          idat=1,ndat!          md1,md2,md3: Dimension of ZF!          md2proc=((md2-1)/nproc)+1 ! maximal number of small box 2nd dim slices for one proc!	OUTPUT:!	   RHOoutput(i1,i2,i3) = RHOinput(i1,i2,i3) + sum on idat of (FFT(ZF))**2 *weight!               i1=1,n1 , i2=1,n2 , i3=1,n3 !          nproc: number of processors used as returned by MPI_COMM_SIZE!          iproc: [0:nproc-1] number of processor as returned by MPI_COMM_RANK!	   n1,n2,n3: logical dimension of the transform. As transform lengths !		     most products of the prime factors 2,3,5 are allowed.!                    The detailed table with allowed transform lengths can !                    be found in subroutine CTRIG!	   nd1,nd2,nd3: Dimension of RHO!          nd3proc=((nd3-1)/nproc)+1 ! maximal number of big box 3rd dim slices for one proc!!       PERFORMANCE CONSIDERATIONS:!       The maximum number of processors that can reasonably be used is max(n2/2,n3/2)!!       It is very important to find the optimal !       value of NCACHE. NCACHE determines the size of the work array ZW, that!       has to fit into cache. It has therefore to be chosen to equal roughly !	half the size of the physical cache in units of real*8 numbers.!       The optimal value of ncache can easily be determined by numerical !       experimentation. A too large value of ncache leads to a dramatic !       and sudden decrease of performance, a too small value to a to a !       slow and less dramatic decrease of performance. If NCACHE is set !       to a value so small, that not even a single one dimensional transform !       can be done in the workarray zw, the program stops with an error message.!!       RESTRICTIONS on USAGE!  Copyright (C) 2002-2005 Stefan Goedecker, CEA Grenoble!  This file is distributed under the terms of the!  GNU General Public License, see http://www.gnu.org/copyleft/gpl.txt .        implicit real*8 (a-h,o-z)#       if defined MPI_FFT        include 'mpif.h'#       endif! real space input        integer, parameter :: ddp = kind(1.d0)        REAL(DDP), DIMENSION(nd1,nd2,nd3proc) :: rho        REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:) :: rhopart! Fourier space output        REAL(DDP), DIMENSION(2,md1,md3,md2proc,ndat) :: zf! weight for the density accumulation        REAL(DDP), DIMENSION(ndat) :: weight! work arrays for transpositions        REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:) :: zt! work arrays for MPI        REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:,:) :: zmpi1        REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:,:) :: zmpi2! cache work array        REAL(DDP), ALLOCATABLE, DIMENSION(:,:,:) :: zw! FFT work arrays        REAL(DDP), ALLOCATABLE, DIMENSION(:,:) :: trig1,trig2,trig3        INTEGER, ALLOCATABLE, DIMENSION(:) :: after1,now1,before1, &                           after2,now2,before2,after3,now3,before3!$      interface!$        integer ( kind=4 ) function omp_get_num_threads ( )!$        end function omp_get_num_threads!$      end interface!$      interface!$        integer ( kind=4 ) function omp_get_thread_num ( )!$        end function omp_get_thread_num!$      end interface        write(6,*)' accrho : enter '! find cache size that gives optimal performance on machine        ncache=4*1024        if (ncache/(4*max(n1,n2,n3)).lt.1) then                      write(6,*) &                         ' ncache has to be enlarged to be able to hold at' // &                         'least one 1-d FFT of each size even though this will' // &                         'reduce the performance for shorter transform lengths'                       stop        endif	lock=0!$omp parallel  default(private) &!$omp shared(ndat,n1,n2,n3,nd1,nd2,nd3proc,md1,md2proc,md3,iproc,nproc,ncache,rho,zf,lock,weight)&!$omp shared(max1,max2,max3,m1,m2,m3,icplexwf)	iam=0	npr=1!$      iam=omp_get_thread_num()!$      npr=omp_get_num_threads()!       Effective m1 and m2 (complex-to-complex or real-to-complex)        n1eff=n1 ; m2eff=m2 ; m1zt=n1        if(icplexwf==1)then         n1eff=(n1+1)/2 ; m2eff=m2/2+1 ; m1zt=2*(n1/2+1)        endif        lzt=m2eff        if (mod(m2eff,2).eq.0) lzt=lzt+1        if (mod(m2eff,4).eq.0) lzt=lzt+1        nnd3=nd3proc*nproc        ! maximal number of big box 3rd dim slices for all procs!$omp critical        allocate(trig1(2,2048),after1(7),now1(7),before1(7), &                 trig2(2,2048),after2(7),now2(7),before2(7), &                 trig3(2,2048),after3(7),now3(7),before3(7), &                 zw(2,ncache/4,2),zt(2,lzt,m1zt), &                 zmpi2(2,md1,md2proc,nnd3))	if (nproc.gt.1) allocate(zmpi1(2,md1,md2proc,nnd3))        if (npr.gt.1) allocate(rhopart(nd1,nd2,nd3proc))!$omp end critical	if (npr.gt.1) rhopart(:,:,:)=0.0d0        call ctrig(n3,trig3,after3,before3,now3,1,ic3)        call ctrig(n1,trig1,after1,before1,now1,1,ic1)        call ctrig(n2,trig2,after2,before2,now2,1,ic2)!$omp do	do 12345,idat=1,ndat! transform along z axis! input: I1,I3,J2,(Jp2)        lot=ncache/(4*n3)        do 3333,j2=1,md2proc	if (iproc*md2proc+j2.le.m2eff) then        do 3000,i1=1,m1,lot        ma=i1        mb=min(i1+(lot-1),m1)	n1dfft=mb-ma+1!  input: I1,I3,J2,(Jp2)        call fill_cent(md1,md3,lot,n1dfft,max3,m3,n3,zf(1,i1,1,j2,idat),zw(1,1,1))	inzee=1	do i=1,ic3	call fftstp(lot,n1dfft,n3,lot,n3,zw(1,1,inzee),zw(1,1,3-inzee), &                    trig3,after3(i),now3(i),before3(i),1)    	inzee=3-inzee	enddo!  input: I1,i3,J2,(Jp2)	call scramble(i1,j2,lot,n1dfft,md1,n3,md2proc,nnd3,zw(1,1,inzee),zmpi2)!  output: I1,J2,i3,(Jp2)3000	continue	endif3333	continue! Interprocessor data transposition! input: I1,J2,j3,jp3,(Jp2)        if (nproc.gt.1) then11	continue!$omp   flush(lock)		if (mod(lock,npr).ne.iam) goto 11#       if defined MPI_FFT        call MPI_ALLTOALL(zmpi2,md1*md2proc*nd3proc, &                          MPI_double_precision, &                          zmpi1,md1*md2proc*nd3proc, &                          MPI_double_precision,MPI_COMM_WORLD,ierr)#       endif        lock=lock+1	!$omp   flush(lock)	! output: I1,J2,j3,Jp2,(jp3)        endif!DEBUG!       write(6,*)' zmpi2 ='!       do i3=1,nnd3!        do i2=1,m2eff!         do i1=1,md1!          write(6, '(3i4,2es16.6)')i1,i2,i3,zmpi2(1:2,i1,i2,i3)!         enddo!        enddo!       enddo!       stop!ENDDEBUG	do 1212,j3=1,nd3proc	if (iproc*nd3proc+j3.le.n3) then	Jp2st=1	J2st=1! transform along x axis        lot=ncache/(4*n1)        do 1000,j=1,m2eff,lot        ma=j        mb=min(j+(lot-1),m2eff)	n1dfft=mb-ma+1! input: I1,J2,j3,Jp2,(jp3)        if (nproc.eq.1) then 	call mpiswitch_cent(j3,n1dfft,Jp2st,J2st,lot,max1,md1,m1,n1,&&         md2proc,nd3proc,nproc,zmpi2,zw(1,1,1))        else 	call mpiswitch_cent(j3,n1dfft,Jp2st,J2st,lot,max1,md1,m1,n1,&&         md2proc,nd3proc,nproc,zmpi1,zw(1,1,1))        endif! output: J2,Jp2,I1,j3,(jp3)! input: I2,I1,j3,(jp3)	inzee=1	do i=1,ic1-1	call fftstp(lot,n1dfft,n1,lot,n1,zw(1,1,inzee),zw(1,1,3-inzee), &                    trig1,after1(i),now1(i),before1(i),1)    	inzee=3-inzee	enddo	i=ic1	call fftstp(lot,n1dfft,n1,lzt,m1zt,zw(1,1,inzee),zt(1,j,1), &       	     trig1,after1(i),now1(i),before1(i),1)! output: I2,i1,j3,(jp3)1000	continue! transform along y axis        lot=ncache/(4*n2)        if(icplexwf==1)then         if(mod(lot,2).ne.0)lot=lot+1 ! needed to introduce jeff        endif        do 2000,j=1,n1eff,lot        ma=j        mb=min(j+(lot-1),n1eff)	n1dfft=mb-ma+1        jeff=j        includelast=1        if(icplexwf==1)then         jeff=2*j-1         includelast=1         if(mb==n1eff .and. n1eff*2/=n1)includelast=0        endif        !  input: I2,i1,j3,(jp3)        if(icplexwf==2)then         call switch_cent(n1dfft,max2,m2,n2,lot,n1,lzt,zt(1,1,j),zw(1,1,1))        else         call switchreal_cent(includelast,n1dfft,max2,n2,lot,m1zt,lzt,zt(1,1,jeff),zw(1,1,1))        endif! output: i1,I2,j3,(jp3)	inzee=1	do i=1,ic2	call fftstp(lot,n1dfft,n2,lot,n2,zw(1,1,inzee),zw(1,1,3-inzee), &                    trig2,after2(i),now2(i),before2(i),1)    	inzee=3-inzee	enddo!Accumulate	if (npr.eq.1) then	call addrho(icplexwf,includelast,nd1,nd2,n2,lot,n1dfft,&&        zw(1,1,inzee),rho(jeff,1,j3),weight(idat))	else		call addrho(icplexwf,includelast,nd1,nd2,n2,lot,n1dfft,&&        zw(1,1,inzee),rhopart(jeff,1,j3),weight(idat))	endif2000	continue! output: i1,i2,j3,(jp3)!DEBUG!       write(6,*)' j3=1, rho ='!       do i1=1,n1!        do i2=1,n2!         write(6, '(2i4,2es16.6)')i1,i2,rho(i1,i2,j3)!        enddo!       enddo !       stop!ENDDEBUG        endif1212	continue12345   continue!$omp enddo!$omp critical! Sum total density from the partial densities per thread	if (npr.gt.1) then	do 644, i3=1,nd3proc        j3=iproc*nd3proc+i3        if (j3.le.n3) then	do 643, i2=1,n2	do 643, i1=1,n1	rho(i1,i2,i3)=rho(i1,i2,i3)+rhopart(i1,i2,i3)643	continue	endif644	continue	endif!$omp end critical        deallocate(trig1,after1,now1,before1, &                   trig2,after2,now2,before2, &                   trig3,after3,now3,before3, &                   zmpi2,zw,zt)	if (nproc.gt.1) deallocate(zmpi1)        if (npr.gt.1) deallocate(rhopart)!$omp end parallel         write(6,*)' accrho : exit '	return	end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -