📄 lbg_8.html
字号:
<title>Neural Competitive Models Demo</title><strong><p align=right><strong>Authors: </strong><A HREF="http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/loos">Hartmut S. Loos</A><A HREF="http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/fritzke">Bernd Fritzke</A><hr></p><CENTER><!--Neural Nets--> <H2>DemoGNG (Version 1.5)</H2>(Please wait while loading ca. 122 KByte class-code.)<p></strong></CENTER> <i>DemoGNG</i>, a Java applet, implements several methods related to competitive learning. It is possible to experiment with the methods using various data distributions and observe the learning process. A common terminology is used to make it easy to compare one method to the other.<p><hr><center><applet archive="DemoGNG.zip" code="DemoGNG.class" width=720 height=560><param name=algorithm value="LBG"><param name=distribution value="UNIT"><b>Your browser does not support Java applets.</b></applet></center><p><hr><center><table border=3 width = 400><tr><td width = 0><td width = 210><center><a href="DemoGNGcode.html"><b>Java Code</b></a></center><td width = 210><center><a href="http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/JavaPaper/"><b>Model Description</b></a></center><td width = 210><center><a href="tex/DemoGNG/DemoGNG.html"><b>Manual</b></a></center><td width = 0><tr></table></center> <p> Hopefully, the experimentation with the models will increase the intuitive understanding and make it easier to judge their particular strengths and weaknesses. <p> The following algorithms are available:<UL><LI> LBG (Linde, Buzo, Gray)<LI> LBG-U (Fritzke)<LI> Hard Competitive Learning (standard algorithm)<LI> Neural Gas (Martinetz and Schulten)<LI> Competitive Hebbian Learning (Martinetz and Schulten)<LI> Neural Gas with Competitive Hebbian Learning (Martinetz and Schulten)<LI> Growing Neural Gas (Fritzke)<LI> Growing Neural Gas with Utility (GNG-U, Fritzke)<LI> Self-Organizing Map (Kohonen)<LI> Growing Grid (Fritzke)</UL>If you are not quite familiar with what the applet does, have a look at the<A HREF="tex/DemoGNG/DemoGNG.html"><b>manual in HTML-format</b></A>or as<A HREF="tex/DemoGNG.ps.gz"><b>Postscript version</b></A> (ca. 233 KByte).<p>For those of you, who want to go into further details:look at the technical report <A HREF="http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/JavaPaper/"><b>Some Competitive Learning Methods</b></A> by Bernd Fritzke also available as <A HREF="ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/NN/DemoGNG/sclm.ps.gz"><b>Postscript version</b></A>.Furthermore, you can<A HREF="DemoGNGcode.html#download"><b>Download the whole Package</b></A> or justhave a look at the<A HREF="DemoGNGcode.html#source"><b>DemoGNG Source</b></A> or the<A HREF="DemoGNGcode.html#cdoc"><b>Code Documentation</b></A>.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -