⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node22.html

📁 关于自组织神经网络的一种新结构程序,并包含了其它几种神经网络的程序比较
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"><!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan* with significant contributions from:  Jens Lippman, Marek Rouchal, Martin Wilck and others --><HTML><HEAD><TITLE>5.4.8 Growing Grid</TITLE><META NAME="description" CONTENT="5.4.8 Growing Grid"><META NAME="keywords" CONTENT="DemoGNG"><META NAME="resource-type" CONTENT="document"><META NAME="distribution" CONTENT="global"><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1"><LINK REL="STYLESHEET" HREF="DemoGNG.css"><LINK REL="previous" HREF="node21.html"><LINK REL="up" HREF="node14.html"><LINK REL="next" HREF="node23.html"></HEAD><BODY ><!--Navigation Panel--><A NAME="tex2html321" HREF="node23.html"><IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="http://www.neuroinformatik.ruhr-uni-bochum.de/icons/next_motif.gif"></A> <A NAME="tex2html318" HREF="node14.html"><IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="http://www.neuroinformatik.ruhr-uni-bochum.de/icons/up_motif.gif"></A> <A NAME="tex2html314" HREF="node21.html"><IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="http://www.neuroinformatik.ruhr-uni-bochum.de/icons/previous_motif.gif"></A> <A NAME="tex2html320" HREF="node1.html"><IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="http://www.neuroinformatik.ruhr-uni-bochum.de/icons/contents_motif.gif"></A>  <BR><B> Next:</B> <A NAME="tex2html322" HREF="node23.html">6 Wishlist</A><B> Up:</B> <A NAME="tex2html319" HREF="node14.html">5.4 Model Specific Options</A><B> Previous:</B> <A NAME="tex2html315" HREF="node21.html">5.4.7 Self-Organizing Map</A><BR><BR><!--End of Navigation Panel--><A NAME="tex2html1" HREF="http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/DemoGNG/GG_8.html">Growing Grid</A><IMG WIDTH="49" HEIGHT="38" ALIGN="BOTTOM" BORDER="0" SRC="../smallDuke.gif"><H3><A NAME="SECTION00074800000000000000">5.4.8 </A></H3><DL><DT><STRONG>No new Nodes</STRONG><DD>No new nodes will be inserted.<DT><STRONG>lambda_g</STRONG><DD>This parameter (<IMG WIDTH="19" HEIGHT="26" ALIGN="MIDDLE" BORDER="0" SRC="img32.gif" ALT="$\lambda_g$">) indicates how manyadaptation steps on average are done per node before new nodes are  inserted (<I>growth phase</I>).<DT><STRONG>lambda_f</STRONG><DD>This parameter (<IMG WIDTH="20" HEIGHT="26" ALIGN="MIDDLE" BORDER="0" SRC="img14.gif" ALT="$\lambda_f$">) indicates how many  adaptation steps on average are done per node before new nodes are  inserted (<I>fine-tuning phase</I>).<DT><STRONG>epsilon_i</STRONG><DD>epsilon initial (<IMG WIDTH="14" HEIGHT="24" ALIGN="MIDDLE" BORDER="0" SRC="img10.gif" ALT="$\epsilon_i$">).<DT><STRONG>epsilon_f</STRONG><DD>epsilon final (<IMG WIDTH="17" HEIGHT="24" ALIGN="MIDDLE" BORDER="0" SRC="img11.gif" ALT="$\epsilon_f$">).<DT><STRONG>sigma</STRONG><DD>This parameter (<IMG WIDTH="12" HEIGHT="12" ALIGN="BOTTOM" BORDER="0" SRC="img33.gif" ALT="$\sigma$">) determines the width of the  bell-shaped neighborhood interaction function.</DL>In the fine-tuning phase the time-dependend learning rate <IMG WIDTH="27" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img28.gif" ALT="$\epsilon(t)$">is determined according to<P ALIGN="CENTER"><IMG WIDTH="144" HEIGHT="27" SRC="img12.gif" ALT="\begin{displaymath}\qquad\epsilon(t) = \epsilon_i(\epsilon_f/\epsilon_i)^{t/t_{\rm max}}.\end{displaymath}"></P><BR><HR><ADDRESS><I>Hartmut S. Loos</I><BR><I>10/19/1998</I></ADDRESS></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -