⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 关于自组织神经网络的一种新结构程序,并包含了其它几种神经网络的程序比较
💻
📖 第 1 页 / 共 2 页
字号:
ods by Bernd Fritzke which is available in HTML3- and in Postscript-format4.5.4.1    LBG, LBG-U__________________________ Number of Signals       _The number of input signals (only discrete distributions)._________________________ ______________LBG-U____ _Switches from LBG to LBG-U and back.5.4.2    Hard Competitive Learning_______________Variable____Switches from a constant to a variable learning rate.____________ epsilon  _This value (ffl) determines the extent to which the winner is adapted____________      towards the input signal (constant learning rate).______________ epsilon_i  _epsilon initial (ffl ).______________                    i______________ epsilon_f   _epsilon final (ffl  )._____________ _                  f____________t_max____The simulation ends, if the number of input signals exceeds this value      (tmax )._____________________________________3   4http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/JavaPaper    ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/NN/DemoGNG/sclm.ps.gz                                             9            UNI                       Small Spirals                      UNIT         Rectangle                    Large Spirals                  HiLo Density           Circle                          Ring                        Discrete       Move & Jump                        Move                           Jump            Figure 8: Overview of the available probability distributions    The variable learning rate is determined according to                                    ffl(t) = ffli(fflf =ffli)t=tmax:5.4.3    Neural Gas_______________lambda_i___ _lambda initial (i).________________lambda_f_____lambda final (f ).______________ epsilon_i  _epsilon initial (ffl ).______________                    i______________ epsilon_f   _epsilon final (ffl  )._____________ _                  f____________t_max____The simulation ends, if the number of input signals exceeds this value      (tmax ).The reference vectors are adjusted according to                          w i = ffl(t)  h  (ki(  ; A))  (   w i)                                            10with the following time-dependencies:                                 (t) = i(f =i)t=tmax                                     ffl(t) = ffli(fflf =ffli)t=tmax                                 h  (k) = exp (k=(t)):5.4.4    Competitive Hebbian LearningThis implementation requires no model specific parameters.  In general one wouldhave a maximum number of time steps (tmax ).5.4.5    Neural Gas with Competitive Hebbian Learning_______________lambda_i___ _lambda initial (i).________________lambda_f_____lambda final (f ).______________ epsilon_i  _epsilon initial (ffl ).______________                    i______________ epsilon_f   _epsilon final (ffl  )._____________ _                  f____________t_max____The simulation ends,  if the number of input signals exceed this value      (tmax ).___________ edge_i  _Initial value for time-dependend edge aging (T ).___________                                              i___________ edge_f   _Final value for time-dependend edge aging (T  ).__________ _                                            fEdges are removed with an age larger than the maximal age T (t) whereby                                 T (t) = Ti(Tf =Ti)t=tmax:The reference vectors are adjusted according to                          w i = ffl(t)  h  (ki(  ; A))  (   w i)with the following time-dependencies:                                 (t) = i(f =i)t=tmax                                     ffl(t) = ffli(fflf =ffli)t=tmax                                 h  (k) = exp (k=(t)):5.4.6    Growing Neural Gas, Growing Neural Gas with Utility_______________________No_new_Nodes________No new nodes will be inserted.___________ Utility  _Switches from GNG to GNG-U and back. The value (k) determines the__________ _      deletion of the unit with the smallest utility Ui (i := arg mincUc), if the      utility value falls below a certain fraction of the error variable Eq: k < Eq=Ui.______________Lambda____ _If the number of input signals generated so far is an integer multiple of      this value (), insert a new node.                                            11______________________ max. Edge Age       _Remove edges with an age larger than this value (a    ). If this_____________________ _                                                  max      results in nodes having no emanating edges, remove them as well.______________________ Epsilon winner     _Move the winner node towards the input signal by this fraction______________________      of the total distance (fflb).________________________ Epsilon neighbor      _Move the neighbors of the winner node towards the input_______________________ _      signal by this fraction of the total distance (ffln ).__________ alpha   _Decrease the error variables of the nodes neighboring to the newly inserted_________ _      node by a fraction of this size (ff).__________beta___Decrease the error variables of all nodes by a fraction of this size (fi).5.4.7    Self-Organizing Map_______________Grid_size__ _The form of the grid and the number of nodes are determined.______________ epsilon_i  _epsilon initial (ffl ).______________                    i______________ epsilon_f   _epsilon final (ffl  )._____________ _                  f____________ sigma_i   _sigma initial (oe ).___________ _                 i_____________ sigma_f   _sigma final (oe  )._____________               f____________t_max____The simulation ends,  if the number of input signals exceed this value      (tmax ).Determine ffl(t) and oe(t) according to                                  ffl(t) = ffli(fflf =ffli)t=tmax;                                 oe(t) = oei(oef =oei)t=tmax:5.4.8    Growing Grid_______________________No_new_Nodes________No new nodes will be inserted._______________ lambda_g    _This parameter ( ) indicates how many adaptation steps on average_______________                g      are done per node before new nodes are inserted (growth phase).________________lambda_f_____This parameter (f ) indicates how many adaptation steps on average      are done per node before new nodes are inserted (fine-tuning phase).______________ epsilon_i  _epsilon initial (ffl ).______________                    i______________ epsilon_f   _epsilon final (ffl  )._____________ _                  f__________ sigma   _This parameter (oe) determines the width of the bell-shaped neighborhood_________ _      interaction function.In the fine-tuning phase the time-dependend learning rate ffl(t) is determined ac-cording to                                    ffl(t) = ffli(fflf =ffli)t=tmax:                                            126     WishlistThis is a list of projects for DemoGNG. Bug reports and requests which can notbe fixed or honored right away will be added to this list. If you have some time forJava hacking, you are encouraged to try to provide a solution to one of the followingproblems. It might be a good idea to send a mail first, though.    fflChange looping in the run-procedure.    fflNew Method k-means (MacQueen, 1967).    fflRedesign of the user interface (JDK 1.2).    fflSupervised Learning    fflTune the main Makefile.    Please send any comments or suggestions you might have, along with any bugsthat you may encounter to:Hartmut S. LoosHartmut.Loos@neuroinformatik.ruhr-uni-bochum.de                                            13ReferencesFritzke, B. (1994). Fast learning with incremental RBF networks. Neural Processing     Letters, 1(1):2-5.Fritzke, B. (1995a).  A growing neural gas network learns topologies.  In Tesauro,     G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural Information     Processing Systems 7, pages 625-632. MIT Press, Cambridge MA.Fritzke, B. (1995b). Growing grid - a self-organizing network with constant neigh-     borhood range and adaptation strength. Neural Processing Letters, 2(5):9-13.Fritzke, B. (1997a).  A self-organizing network that can follow non-stationary dis-     tributions.  In ICANN'97:  International Conference on Artificial Neural Net-     works, pages 613-618. Springer.Fritzke, B. (1997b). The LBG-U method for vector quantization - an improvement     over LBG inspired from neural networks. Neural Processing Letters, 5(1).Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.     Biological Cybernetics, 43:59-69.Linde, Y., Buzo, A., and Gray, R. M. (1980).  An algorithm for vector quantizer     design. IEEE Transactions on Communication, COM-28:84-95.MacQueen, J. (1967).  Some methods for classification and analysis of multivari-     ate observations.  In LeCam, L. and Neyman, J., editors, Proceedings of the     Fifth Berkeley Symposium on Mathematical statistics and probability, volume 1,     pages 281-297, Berkeley. University of California Press.Martinetz, T. M. (1993). Competitive Hebbian learning rule forms perfectly topol-     ogy preserving maps.  In ICANN'93:  International Conference on Artificial     Neural Networks, pages 427-434, Amsterdam. Springer.Martinetz, T. M. and Schulten, K. J. (1991). A "neural-gas" network learns topolo-     gies.   In Kohonen,  T.,  M"akisara,  K.,  Simula,  O.,  and Kangas,  J.,  editors,     Artificial Neural Networks, pages 397-402. North-Holland, Amsterdam.Martinetz,  T. M. and Schulten,  K. J. (1994).  Topology representing networks.     Neural Networks, 7(3):507-522.                                            147     Change  log19.10.1998:  Version  1.5  released.    These are the most important changes from v1.0 to v1.5:19.10.1998:  Updated  the  manual.17.07.1998:  LBG:  Marked  nodes  which  haven't  moved  since  the  last                update.16.07.1998:  GNG-U:  Fixed  a  small  bug  regarding  'beta'  for  utility.15.07.1998:  Non-stationary  probability  distributions.23.10.1997:  Fixed:  nodes  without  neighbors  are  not  deleted  in  GNG-U                (but  in  GNG).13.10.1997:  Trifles  in  GNG-U.29.09.1997:  Fixed  a  small  bug  in  Method  LBG.28.09.1997:  New  Method  LBG-U  (Fritzke  1997).27.09.1997:  New  Method  GNG-U  (Fritzke  1997).10.03.1997:  Version  1.3  released.09.03.1997:  Proofred  the  manual.08.03.1997:  Changed  the  order  of  the  models  (model  menu                and  manual).07.03.1997:  GNG:  added  two  variables  (alpha,  beta).06.03.1997:  Tuned  the  code  (20%  faster).05.03.1997:  Cleaned  up  the  code/deleted  DEBUG  statements.04.03.1997:  Updated  the  manual.03.03.1997:  Added  a  new  button  'Random  Init'.02.03.1997:  Made  some  improvements  concerning  LBG.28.02.1997:  Version  1.2  released.26.02.1997:  Version  1.1  skipped  for  PR  reasons  :-).24.02.1997:  Added  description  of  the  model  specific  options  to                the  manual.24.02.1997:  Improved  the  variable  learning  rate  for  Hard                Competitive  Learning.21.02.1997:  Changed  eta  to  epsilon.20.02.1997:  First  draft  of  the  manual  for  v1.1.18.02.1997:  Updated  the  manual.17.02.1997:  Made  some  screen  dumps  for  the  manual.30.10.1996:  Some  improvements  and  a  bugfix  concerning  the  error                values.28.10.1996:  New  method  Self-organizing  map  (SOM).23.10.1996:  Redesigned  the  user  interface.  I  have  made  minor                changes  only.  The  next  major  version  2.0  will  have                a  complete  new  interface.22.10.1996:  Added  a  close  button  to  the  error  graph.21.10.1996:  In  the  method  Growing  Grid  a  percentage  counter  appears                in  the  fine-tuning  phase.  At  100%  the  calculation  stops.17.10.1996:  Added  a  new  button  'White'.  It  switches  the  background                of  the  drawing  area  to  white.  This  is  useful  for  making                hardcopies  of  the  screen.17.10.1996:  New  distribution  UNIT.                                            1516.10.1996:  Fixed  a  bug:  Now  the  Voronoi  diagram/Delaunay                triangulation  is  also  available  for  Growing  Grid.15.10.1996:  New  method  Growing  Grid.14.10.1996:  Added  a  new  class  GridNodeGNG  to  gain  a  grid  covering                the  nodes.09.10.1996:  Added  a  new  menu  for  speed.  Now  it  is  possible  to  switch                to  an  individual  speed  depending  on  the  machine  and/or                browser.  (On  some  machines  there  was  no  interaction                possible  with  the  default  value.  On  the  other  hand,  why                longer  waiting  than  necessary?)04.10.1996:  Added  an  error  graph.  (The  source  of  this  class  was                written  by  Christian  Kurzke  and  Ningsui  Chen.  I  have                only  made  minor  changes  to  this  class.  Many  thanks  to                Christian  Kurzke  and  Ningsui  Chen  for  this  nice                graph  class.)30.09.1996:  Added  a  new  frame  in  a  separate  window  for  the  error                graph  (new  class  GraphGNG).30.09.1996:  New  checkboxes  to  turn  the  nodes/edges  on  and  off.26.09.1996:  Fixed  again  all  known  bugs.25.09.1996:  Finished  the  discrete  distribution  (mainly  for  LBG).24.09.1996:  Default  no  sound.20.09.1996:  Fixed  all  known  bugs  (Can  you  find  some  unknown?).19.09.1996:  Prepared  for  new  distribution  (a  discrete  one  with  500                fixed  signals).10.09.1996:  New  method  LBG  (some  minor  bugs  are  known,  but  not                concerning  the  method).03.09.1996:  Renamed  class  PanelGNG  to  a  more  convenient  name                (ComputeGNG).02.09.1996:  Split  the  source  file  DemoGNG.java.  Now  each  class  has                its  own  file.01.09.1996:  Inserted  more  comments.30.08.1996:  Cleaned  up  the  code  to  compute  the  Voronoi                diagram/Delaunay  triangulation.07.08.1996:  Added  Delaunay  triangulation  (press  checkbutton                Delaunay)!06.08.1996:  Now  you  can  display  Voronoi  diagrams  for  each  method                (press  checkbutton  Voronoi)!21.06.1996:  Version  1.0  released.                                            16

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -