📄 heavydynnodes.m
字号:
function [validind,state]=heavydynnodes(ind,pop,params,state,data,parentindices)
%HEAVYDYNNODES Applies heavy dynamic size filters to a new GPLAB individual.
% [VALIDIND,STATE]=HEAVYDYNNODES(IND,POP,PARAMS,STATE,DATA,PARENTS)
% tests if an individual (IND) conforms to the heavy dynamic maximum
% size (number of nodes) rules. If not, returns one of its parents.
%
% Input arguments:
% IND - individual to be validated (array)
% POPULATION - the current population of the algorithm (array)
% PARAMS - the running parameters of the algorithm (struct)
% STATE - the current state of the algorithm (struct)
% DATA - the dataset for use in the algorithm (struct)
% PARENTS - the indices of the parents of IND (matrix)
% Output arguments:
% VALIDIND - valid individual (IND or one of its parents) (array)
% STATE - the updated state of the algorithm (struct)
%
% References:
% Silva S. and Almeida J. (2003) "Dynamic maximum tree depth - a
% simple technique for avoiding bloat in tree-based GP". GECCO-2003.
% Silva S. and Costa E. (2004) "Dynamic limits for bloat control -
% variations on size and depth". GECCO-2004.
%
% See also VALIDATEINDS, DYNDEPTH, STRICTNODES, ... (the other filters)
%
% Copyright (C) 2003-2004 Sara Silva (sara@dei.uc.pt)
% This file is part of the GPLAB Toolbox
% tree nodes is needed:
if isempty(ind.nodes)
ind.nodes=treenodes(ind.tree);
end
% measure individual's fitness:
[ind.fitness,ind.result,state]=calcfitness(ind.str,params,data,state);
% if bigger than state.maxlevel:
if ind.nodes>state.maxlevel
% if this individual is the best so far, increase dynamic nodes:
if ~isempty(state.bestsofar) & ((params.lowerisbetter & ind.fitness<state.bestsofar.fitness) | (~params.lowerisbetter & ind.fitness>state.bestsofar.fitness))
state.lastid=state.lastid+1;
ind.id=state.lastid;
state.maxlevel=ind.nodes;
state.bestsofar=ind;
if ~strcmp(params.output,'silent')
fprintf(' (increasing maximum nodes to %d)\n',state.maxlevel);
end
% else if this individual is not the best so far, check the size of the biggest parent:
else
mnodes=max([pop(parentindices).nodes]);
% if parents were first generation (isempty(mnodes)) or this ind is no bigger, accept:
if isempty(mnodes) | ind.nodes<=mnodes
state.lastid=state.lastid+1;
ind.id=state.lastid;
else % else reject (substitute by a parent):
% just choose the first parent:
% (anyway, the choice of who is the first parent is already random)
ind=pop(parentindices(1));
end
end
% if smaller than state.maxlevel:
elseif ind.nodes<state.maxlevel
% if this individual is the best so far, decrease dynamic nodes:
if ~isempty(state.bestsofar) & ((params.lowerisbetter & ind.fitness<state.bestsofar.fitness) | (~params.lowerisbetter & ind.fitness>state.bestsofar.fitness))
state.lastid=state.lastid+1;
ind.id=state.lastid;
oldlevel=state.maxlevel;
state.maxlevel=max([ind.nodes state.iniclevel]); % do not go lower than initial level!
state.bestsofar=ind;
if (oldlevel>state.maxlevel) & (~strcmp(params.output,'silent'))
fprintf(' (decreasing maximum nodes to %d)\n',state.maxlevel);
end
end
end
validind=ind;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -