📄 sg_lambert_equal_area.m
字号:
function [x, y] = lambert_equal_area(lon, lat, doInverse, plon, plat, pang)% lambert_equal_area -- Lambert equal-area projection.% [x, y] = lambert_eqarea(lon, lat, doInverse, plon, plat, pang)% returns the (x, y) positions corresponding to the Lambert% equal-area projection of (lon, lat), given in degrees. The% mapping is centered on the given point (plon, plat, pang).% At the center point, the positive y-axis points upwards. % Copyright (C) 1999 Dr. Charles R. Denham, ZYDECO.% All Rights Reserved.% Disclosure without explicit written consent from the% copyright owner does not constitute publication. % Version of 27-Dec-1999 13:50:29.% Updated 27-Dec-1999 13:50:29.RCF = 180 / pi;if nargin < 2, help(mfilename), return, endif nargin < 3, doInverse = 0; endif nargin < 4, plon = 0; endif nargin < 5, plat = 0; endif nargin < 6, pang = 0; endif all(doInverse(:)) xin = lon; yin = lat; [olon, olat] = inv_lambert_equal_area(xin, yin, plon, plat, pang); x = olon; y = olat; returnendlon = lon / RCF;lat = lat / RCF;clat = cos(lat);x = clat .* cos(lon);y = clat .* sin(lon);z = sin(lat);if any([plat, plon, pang]) [y, x] = rot1(y, x, plon); [z, x] = rot1(z, x, plat); [y, z] = rot1(y, z, pang);endh = sqrt(y.*y + z.*z);ang = asin(h);r = 2 * sin(ang / 2) / sqrt(2);h(h == 0) = 1;u = r .* y ./ h;v = r .* z ./ h;x = u/2; % Normalize to 1 at 90 degrees radial distance.y = v/2;if any(pang) [x, y] = rot1(x, y, -pang); % Restore North.end% ---------- inv_lambert_equal_area --------- %function [lon, lat] = inv_lambert_equal_area(x, y, plon, plat, pang)% inv_lambert_equal_area -- Inverse Lambert equal-area projection.% [lon, lat] = inv_lambert_equal_area(x, y, plon, plat, pang)% returns the (lon, lat) corresponding to the given Lambert% equal-area mapping (x, y), centered on the pole (plon, plat,% pang). % Copyright (C) 1999 Dr. Charles R. Denham, ZYDECO.% All Rights Reserved.% Disclosure without explicit written consent from the% copyright owner does not constitute publication. % Version of 27-Dec-1999 10:18:15.% Updated 27-Dec-1999 10:18:15.RCF = 180 / pi;if any(pang) [x, y] = rot1(x, y, pang);endx = 2*x;y = 2*y;r = sqrt(x.*x + y.*y);ang = 2*asin(r/2)*sqrt(2);r(r == 0) = 1;u = cos(ang);v = sin(ang).*x./r;w = sin(ang).*y./r;x = u;y = v;z = w;if any([plat, plon, pang]) [y, z] = rot1(y, z, -pang); [z, x] = rot1(z, x, -plat); [y, x] = rot1(y, x, -plon);endlon = atan2(y, x) * RCF;lat = asin(z) * RCF;% ---------- rot1 --------- %function [rx, ry] = rot1(x, y, deg)% rot1 Planar rotation by an angle in degrees.% [rx, ry] = rot1(x, y, deg) rotates point X toward% Y by angle deg (in degrees).% ROT1 (no arguments) demonstrates itself. % Copyright (C) 1992 Dr. Charles R. Denham, ZYDECO.% All Rights Reserved.% Version of 6-Jul-92 at 22:12:09.633.% Updated 27-Dec-1999 10:16:20.if nargin > 2 xy = [x(:) y(:)].'; else xy = x; deg = y;endrcf = 180 ./ pi;rad = deg ./ rcf;c = cos(rad); s = sin(rad);r = [c -s; s c];z = r * xy;if nargout < 2 rx = zeros(size(x)); rx(:) = z;else rx = zeros(size(x)); ry = zeros(size(y)); rx(:) = z(1, :); ry(:) = z(2, :);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -