📄 parafac.m
字号:
disp(' Line-search acceleration scheme initialized')
end
% Find initial guesses for the loadings if no initial values are given
% Use old loadings
if length(OldLoad)==sum(DimX)*Fac % Use old values
if showfit~=-1
disp(' Using old values for initialization')
end
Factors=OldLoad(:);
% Use DTLD
elseif Init==0
if min(DimX)>1&ord==3&MissMeth==0
if showfit~=-1
disp(' Using direct trilinear decomposition for initialization')
end
[A,B,C]=dtld(X,DimX,Fac);
A=real(A);B=real(B);C=real(C);
% Check for signs and reflect if appropriate
for f=1:Fac
if sign(sum(A(:,f)))<0
if sign(sum(B(:,f)))<0
B(:,f)=-B(:,f);
A(:,f)=-A(:,f);
elseif sign(sum(C(:,f)))<0
C(:,f)=-C(:,f);
A(:,f)=-A(:,f);
end
end
if sign(sum(B(:,f)))<0
if sign(sum(C(:,f)))<0
C(:,f)=-C(:,f);
B(:,f)=-B(:,f);
end
end
end
Factors=[A(:);B(:);C(:)];
else
if showfit~=-1
disp(' Using singular values for initialization')
end
Factors=ini(X,DimX,Fac,2);
Factors=Factors(:);
end
% Use SVD
elseif Init==1
if showfit~=-1
disp(' Using singular values for initialization')
end
Factors=ini(X,DimX,Fac,2);
Factors=Factors(:);
% Use random (orthogonal)
elseif Init==2
if showfit~=-1
disp(' Using orthogonal random for initialization')
end
Factors=ini(X,DimX,Fac,1);
Factors=Factors(:);
elseif Init==3
error(' Initialization option set to three has been changed to 10')
% Use several small ones of the above
elseif Init==10
if showfit~=-1
disp(' Using several small runs for initialization')
end
Opt=Options;
Opt(5) = NaN;
Opt(6) = NumbIteraInitia;
Opt(2) = 0;
ERR=[];
[Factors,it,err] = parafac(X,DimX,Fac,Opt,const,[],[],Weights);
ERR = [ERR;err];
Opt(2) = 1;
[F,it,Err] = parafac(X,DimX,Fac,Opt,const,[],[],Weights);
ERR=[ERR;Err];
if Err<err
Factors=F;
err=Err;
end
Opt(2)=2;
for rep=1:3
[F,it,Err]=parafac(X,DimX,Fac,Opt,const,[],[],Weights);
ERR=[ERR;Err];
if Err<err
Factors=F;
err=Err;
end
end
if showfit~=-1
disp(' ')
disp(' Obtained fit-values')
disp([' Method Fit'])
disp([' DTLD ',num2str(ERR(1))])
disp([' SVD ',num2str(ERR(2))])
disp([' RandOrth ',num2str(ERR(3))])
disp([' RandOrth ',num2str(ERR(4))])
disp([' RandOrth ',num2str(ERR(5))])
end
else
error(' Problem in PARAFAC initialization - Not set correct')
end
% ALTERNATING LEAST SQUARES
err=SSX;
f=2*crit;
it=0;
connew=2;conold=1; % for missing values
ConstraintsNotRight = 0; % Just to ensure that iterations are not stopped if constraints are not yet fully imposed
if showfit~=-1
disp(' ')
disp(' Sum-of-Squares Iterations Explained')
disp(' of residuals variation')
end
while ((f>crit) | (norm(connew-conold)/norm(conold)>MissConvCrit) | ConstraintsNotRight) & it<maxit
conold=connew; % for missing values
it=it+1;
acc=acc+1;
if acc==do_acc;
Load_o1=Factors;
end
if acc==do_acc+1;
acc=0;Load_o2=Factors;
Factors=Load_o1+(Load_o2-Load_o1)*(it^(1/acc_pow));
model=nmodel(Factors(:),DimX,Fac);
if MissMeth
connew=model(id);
errX=X-model;
if DoWeight==0
nerr=sum(sum(errX(id2).^2));
else
nerr=sum(sum((Weights(id2).*errX(id2)).^2));
end
else
if DoWeight==0
nerr=sum(sum((X-model).^2));
else
nerr=sum(sum((X.*Weights-model.*Weights).^2));
end
end
if nerr>err
acc_fail=acc_fail+1;
Factors=Load_o2;
if acc_fail==max_fail,
acc_pow=acc_pow+1+1;
acc_fail=0;
if showfit~=-1
disp(' Reducing acceleration');
end
end
else
if MissMeth
X(id)=model(id);
end
end
end
if DoWeight==0
for ii=ord:-1:1
if ii==ord;
i=1;
else
i=ii+1;
end
idd=[i+1:ord 1:i-1];
l_idx2=lidx(idd,:);
dimx=DimX(idd);
if ~FixMode(i)
L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
Z=ppp(L1,L2);
for j=3:ord-1
L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
Z=ppp(Z,L1);
end
ZtZ=Z'*Z;
ZtX=Z'*X';
OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
L=pfls(ZtZ,ZtX,DimX(i),const(i),OldLoad,DoWeight,Weights);
Factors(lidx(i,1):lidx(i,2))=L(:);
end
x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii)); % Rotate X so the current last mode is the first
x(:)=X;
X=x';
end
else
for ii=ord:-1:1
if ii==ord;
i=1;
else
i=ii+1;
end
idd=[i+1:ord 1:i-1];
l_idx2=lidx(idd,:);
dimx=DimX(idd);
if ~FixMode(i)
L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
Z=ppp(L1,L2);
for j=3:ord-1
L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
Z=ppp(Z,L1);
end
OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
L=pfls(Z,X,DimX(i),const(i),OldLoad,DoWeight,Weights);
Factors(lidx(i,1):lidx(i,2))=L(:);
end
x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii));
x(:)=X;
X=x';
x(:)=Weights;
Weights=x';
end
end
% EVALUATE SOFAR
model=nmodel(Factors(:),DimX,Fac);
if MissMeth % Missing values present
connew=model(id);
X(id)=model(id);
errold=err;
errX=X-model;
if DoWeight==0
err=sum(sum(errX(id2).^2));
else
err=sum(sum((Weights(id2).*errX(id2)).^2));
end
else
errold=err;
if DoWeight==0
err=sum(sum((X-model).^2));
else
err=sum(sum((Weights.*(X-model)).^2));
end
end
if err<1000*eps, % Getting close to the machine uncertainty => stop
disp(' WARNING')
disp(' The misfit is approaching the machine uncertainty')
disp(' If pure synthetic data is used this is OK, otherwise if the')
disp(' data elements are very small it might be appropriate ')
disp(' to multiply the whole array by a large number to increase')
disp(' numerical stability. This will only change the solution ')
disp(' by a scaling constant')
f = 0;
else
f=abs((err-errold)/err);
if f<crit % Convergence: then check that constraints are fulfilled
if any(const==2)|any(const==3) % If nnls or unimodality imposed
for i=1:ord % Extract the
if const(i)==2|const(i)==3 % If nnls or unimodality imposed
Loadd = Factors(sum(DimX(1:i-1))*Fac+1:sum(DimX(1:i))*Fac);
if any(Loadd<0)
ConstraintsNotRight=1;
else
ConstraintsNotRight=0;
end
end
end
end
end
end
if it/showfit-round(it/showfit)==0
if showfit~=-1,
ShowPhi=ShowPhi+1;
if ShowPhi==ShowPhiWhen,
ShowPhi=0;
if showfit~=-1,
disp(' '),
disp(' Tuckers congruence coefficient'),
[phi,out]=ncosine(Factors,Factors,DimX);
disp(phi),
if MissMeth
fprintf(' Change in estim. missing values %12.10f',norm(connew-conold)/norm(conold));
disp(' ')
disp(' ')
end
disp(' Sum-of-Squares Iterations Explained')
disp(' of residuals variation')
end
end
if DoWeight==0
PercentExpl=100*(1-err/SSX);
else
PercentExpl=100*(1-sum(sum((X-model).^2))/SSX); end
fprintf(' %12.10f %g %3.4f \n',err,it,PercentExpl);
if Plt==2
pfplot(X',DimX,Factors,Weights',[0 0 0 0 0 0 0 1]);
drawnow
end
end
end
% Make safety copy of loadings and initial parameters in temp.mat
if it/50-round(it/50)==0
save temp Factors
end
% JUDGE FIT
if err>errold
NumberOfInc=NumberOfInc+1;
end
end % while f>crit
% CALCULATE TUCKERS CONGRUENCE COEFFICIENT
if showfit~=-1 & DimX(1)>1
disp(' '),disp(' Tuckers congruence coefficient')
[phi,out]=ncosine(Factors,Factors,DimX);
disp(phi)
disp(' ')
if max(max(abs(phi)-diag(diag(phi))))>.85
disp(' ')
disp(' ')
disp(' WARNING, SOME FACTORS ARE HIGHLY CORRELATED.')
disp(' ')
disp(' You could decrease the number of components. If this')
disp(' does not help, try one of the following')
disp(' ')
disp(' - If systematic variation is still present you might')
disp(' wanna decrease your convergence criterion and run')
disp(' one more time using the loadings as initial guess.')
disp(' ')
disp(' - Or use another preprocessing (check for constant loadings)')
disp(' ')
disp(' - Otherwise try orthogonalising some modes,')
disp(' ')
disp(' - Or use Tucker3/Tucker2,')
disp(' ')
disp(' - Or a PARAFAC with some modes collapsed (if # modes > 3)')
disp(' ')
end
end
% SHOW FINAL OUTPUT
if DoWeight==0
PercentExpl=100*(1-err/SSX);
else
PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);
end
if showfit~=-1
fprintf(' %12.10f %g %3.4f \n',err,it,PercentExpl);
if NumberOfInc>0
disp([' There were ',num2str(NumberOfInc),' iterations that increased fit']);
end
end
% POSTPROCES LOADINGS (ALL VARIANCE IN FIRST MODE)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
for ff=1:Fac
A(:,ff)=A(:,ff)*norm(B(:,ff));
B(:,ff)=B(:,ff)/norm(B(:,ff));
end
Factors(lidx(i,1):lidx(i,2))=B(:);
end
Factors(lidx(1,1):lidx(1,2))=A(:);
if showfit~=-1
disp(' ')
disp(' Components have been normalized in all but the first mode')
end
% PERMUTE SO COMPONENTS ARE IN ORDER AFTER VARIANCE DESCRIBED (AS IN PCA) IF NO FIXED MODES
if ~any(FixMode)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
[out,order]=sort(diag(A'*A));
order=flipud(order);
A=A(:,order);
Factors(lidx(1,1):lidx(1,2))=A(:);
for i=2:ord
B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
B=B(:,order);
Factors(lidx(i,1):lidx(i,2))=B(:);
end
if showfit~=-1
disp(' Components have been ordered according to contribution')
end
elseif showfit ~= -1
disp(' Some modes fixed hence no sorting of components performed')
end
% APPLY SIGN CONVENTION IF NO FIXED MODES
% FixMode=1
if ~any(FixMode)&~(any(const==2)|any(const==3))
Sign = ones(1,Fac);
for i=ord:-1:2
A=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
Sign2=ones(1,Fac);
for ff=1:Fac
[out,sig]=max(abs(A(:,ff)));
Sign(ff) = Sign(ff)*sign(A(sig,ff));
Sign2(ff) = sign(A(sig,ff));
end
A=A*diag(Sign2);
Factors(lidx(i,1):lidx(i,2))=A(:);
end
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
A=A*diag(Sign);
Factors(lidx(1,1):lidx(1,2))=A(:);
if showfit~=-1
disp(' Components have been reflected according to convention')
end
end
% TOOLS FOR JUDGING SOLUTION
if nargout>3
x=X;
if MissMeth
x(id)=NaN*id;
end
corcondia=corcond(x,DimX,Fac,Factors,Weights,1);
end
if Plt==1|Plt==2
pfplot(X,DimX,Factors,Weights,ones(1,8));
end
% Show which criterion stopped the algorithm
if showfit~=-1
if ((f<crit) & (norm(connew-conold)/norm(conold)<MissConvCrit))
disp(' The algorithm converged')
elseif it==maxit
disp(' The algorithm did not converge but stopped because the')
disp(' maximum number of iterations was reached')
elseif f<eps
disp(' The algorithm stopped because the change in fit is now')
disp(' smaller than the machine uncertainty.')
else
disp(' Algorithm stopped for some mysterious reason')
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -