⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parafac.m

📁 多维数据处理:MATLAB源程序用于处理多维数据
💻 M
📖 第 1 页 / 共 2 页
字号:
   disp(' Line-search acceleration scheme initialized')
end
% Find initial guesses for the loadings if no initial values are given
% Use old loadings
if length(OldLoad)==sum(DimX)*Fac % Use old values
   if showfit~=-1
      disp(' Using old values for initialization')
   end
   Factors=OldLoad(:);
   % Use DTLD
elseif Init==0
   if min(DimX)>1&ord==3&MissMeth==0
      if showfit~=-1
         disp(' Using direct trilinear decomposition for initialization')
      end
      [A,B,C]=dtld(X,DimX,Fac);
      A=real(A);B=real(B);C=real(C);
      % Check for signs and reflect if appropriate
      for f=1:Fac
         if sign(sum(A(:,f)))<0
            if sign(sum(B(:,f)))<0
               B(:,f)=-B(:,f);
               A(:,f)=-A(:,f);
            elseif sign(sum(C(:,f)))<0
               C(:,f)=-C(:,f);
               A(:,f)=-A(:,f);
            end
         end
         if sign(sum(B(:,f)))<0
            if sign(sum(C(:,f)))<0
               C(:,f)=-C(:,f);
               B(:,f)=-B(:,f);
            end
         end
      end
      Factors=[A(:);B(:);C(:)];
   else
      if showfit~=-1
         disp(' Using singular values for initialization')
      end
      Factors=ini(X,DimX,Fac,2);
      Factors=Factors(:);
   end
      % Use SVD 
elseif Init==1
   if showfit~=-1
      disp(' Using singular values for initialization')
   end
   Factors=ini(X,DimX,Fac,2);
   Factors=Factors(:);
   
   % Use random (orthogonal)
elseif Init==2
   if showfit~=-1
      disp(' Using orthogonal random for initialization')
   end
   Factors=ini(X,DimX,Fac,1);
   Factors=Factors(:);
   
elseif Init==3
   error(' Initialization option set to three has been changed to 10')
      % Use several small ones of the above
elseif Init==10
   if showfit~=-1
      disp(' Using several small runs for initialization')
   end
   Opt=Options;
   Opt(5) = NaN;
   Opt(6) = NumbIteraInitia;
   Opt(2) = 0;
   ERR=[];
   [Factors,it,err] = parafac(X,DimX,Fac,Opt,const,[],[],Weights);
   ERR = [ERR;err];
   Opt(2) = 1;
   [F,it,Err] = parafac(X,DimX,Fac,Opt,const,[],[],Weights);
   ERR=[ERR;Err];
   if Err<err
      Factors=F;
      err=Err;
   end
   Opt(2)=2;
   for rep=1:3
      [F,it,Err]=parafac(X,DimX,Fac,Opt,const,[],[],Weights);
      ERR=[ERR;Err];
      if Err<err
         Factors=F;
         err=Err;
      end
   end
   if showfit~=-1
      disp(' ')
      disp(' Obtained fit-values')
      disp([' Method   Fit'])
      disp([' DTLD     ',num2str(ERR(1))])
      disp([' SVD      ',num2str(ERR(2))])
      disp([' RandOrth ',num2str(ERR(3))])
      disp([' RandOrth ',num2str(ERR(4))])
      disp([' RandOrth ',num2str(ERR(5))])
   end
else
   error(' Problem in PARAFAC initialization - Not set correct')
end


% ALTERNATING LEAST SQUARES
err=SSX;
f=2*crit;
it=0;
connew=2;conold=1; % for missing values
ConstraintsNotRight = 0; % Just to ensure that iterations are not stopped if constraints are not yet fully imposed
if showfit~=-1
   disp(' ')
   disp(' Sum-of-Squares   Iterations  Explained')
   disp(' of residuals                 variation')
end
while ((f>crit) | (norm(connew-conold)/norm(conold)>MissConvCrit) | ConstraintsNotRight) & it<maxit
   conold=connew; % for missing values
   it=it+1;
   acc=acc+1; 
   if acc==do_acc;
      Load_o1=Factors;
   end
   if acc==do_acc+1;
      acc=0;Load_o2=Factors;
      Factors=Load_o1+(Load_o2-Load_o1)*(it^(1/acc_pow));
      model=nmodel(Factors(:),DimX,Fac);
      if MissMeth
         connew=model(id);
         errX=X-model;
         if DoWeight==0
            nerr=sum(sum(errX(id2).^2));
         else
            nerr=sum(sum((Weights(id2).*errX(id2)).^2));
         end
      else
         if DoWeight==0
            nerr=sum(sum((X-model).^2));
         else
            nerr=sum(sum((X.*Weights-model.*Weights).^2));
         end
      end
      if nerr>err
         acc_fail=acc_fail+1;
         Factors=Load_o2;
         if acc_fail==max_fail,
            acc_pow=acc_pow+1+1;
            acc_fail=0;
            if showfit~=-1
               disp(' Reducing acceleration');
            end
         end
      else
         if MissMeth
            X(id)=model(id);
         end
      end
   end
   
      if DoWeight==0
      for ii=ord:-1:1
         if ii==ord;
            i=1;
         else
            i=ii+1;
         end
         idd=[i+1:ord 1:i-1];
         l_idx2=lidx(idd,:);
         dimx=DimX(idd);
         if ~FixMode(i)
            L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
            L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
            Z=ppp(L1,L2);
            for j=3:ord-1
               L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
               Z=ppp(Z,L1);
            end
            ZtZ=Z'*Z;
            ZtX=Z'*X';
            OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
            L=pfls(ZtZ,ZtX,DimX(i),const(i),OldLoad,DoWeight,Weights);
            Factors(lidx(i,1):lidx(i,2))=L(:);
         end
         x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii));  % Rotate X so the current last mode is the first
         x(:)=X;
         X=x';
      end
   else
      for ii=ord:-1:1
         if ii==ord;
            i=1;
         else
            i=ii+1;
         end
         idd=[i+1:ord 1:i-1];
         l_idx2=lidx(idd,:);
         dimx=DimX(idd);
         if ~FixMode(i)
            L1=reshape(Factors(l_idx2(1,1):l_idx2(1,2)),dimx(1),Fac);
            L2=reshape(Factors(l_idx2(2,1):l_idx2(2,2)),dimx(2),Fac);
            Z=ppp(L1,L2);
            for j=3:ord-1
               L1=reshape(Factors(l_idx2(j,1):l_idx2(j,2)),dimx(j),Fac);
               Z=ppp(Z,L1);
            end
            OldLoad=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
            L=pfls(Z,X,DimX(i),const(i),OldLoad,DoWeight,Weights);
            Factors(lidx(i,1):lidx(i,2))=L(:);
         end
         x=zeros(prod(DimX([1:ii-1 ii+1:ord])),DimX(ii));
         x(:)=X;
         X=x';
         x(:)=Weights;
         Weights=x';
      end
   end
   
   % EVALUATE SOFAR
   model=nmodel(Factors(:),DimX,Fac);
   if MissMeth  % Missing values present
      connew=model(id);
      X(id)=model(id);
      errold=err;
      errX=X-model;
      if DoWeight==0
         err=sum(sum(errX(id2).^2));
      else
         err=sum(sum((Weights(id2).*errX(id2)).^2));
      end
   else
      errold=err;
      if DoWeight==0
         err=sum(sum((X-model).^2));
      else
         err=sum(sum((Weights.*(X-model)).^2));
      end
   end
   
   if err<1000*eps, % Getting close to the machine uncertainty => stop
      disp(' WARNING')
      disp(' The misfit is approaching the machine uncertainty')
      disp(' If pure synthetic data is used this is OK, otherwise if the')
      disp(' data elements are very small it might be appropriate ')
      disp(' to multiply the whole array by a large number to increase')
      disp(' numerical stability. This will only change the solution ')
      disp(' by a scaling constant')
      f = 0;
   else
      f=abs((err-errold)/err);
      if f<crit % Convergence: then check that constraints are fulfilled
         if any(const==2)|any(const==3) % If nnls or unimodality imposed
            for i=1:ord % Extract the 
               if const(i)==2|const(i)==3 % If nnls or unimodality imposed
                  Loadd = Factors(sum(DimX(1:i-1))*Fac+1:sum(DimX(1:i))*Fac);
                  if any(Loadd<0)
                     ConstraintsNotRight=1;
                  else
                     ConstraintsNotRight=0;
                  end
               end
            end
         end
      end
   end
   
   if it/showfit-round(it/showfit)==0
      if showfit~=-1,
         ShowPhi=ShowPhi+1;
         if ShowPhi==ShowPhiWhen,
            ShowPhi=0;
            if showfit~=-1,
               disp(' '),
               disp('    Tuckers congruence coefficient'),
               [phi,out]=ncosine(Factors,Factors,DimX);
               disp(phi),
               if MissMeth
                  fprintf(' Change in estim. missing values %12.10f',norm(connew-conold)/norm(conold));
                  disp(' ')
                  disp(' ')
               end
               disp(' Sum-of-Squares   Iterations  Explained')
               disp(' of residuals                 variation')
            end
         end
         if DoWeight==0
            PercentExpl=100*(1-err/SSX);
         else
            PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);         end
         fprintf(' %12.10f       %g        %3.4f    \n',err,it,PercentExpl);
         if Plt==2
            pfplot(X',DimX,Factors,Weights',[0 0 0 0 0 0 0 1]);
            drawnow
         end
      end
   end
   
      
   
      % Make safety copy of loadings and initial parameters in temp.mat
   if it/50-round(it/50)==0
      save temp Factors
   end
   
   % JUDGE FIT
   if err>errold
      NumberOfInc=NumberOfInc+1;
   end
   end % while f>crit

% CALCULATE TUCKERS CONGRUENCE COEFFICIENT
if showfit~=-1 & DimX(1)>1
   disp(' '),disp('   Tuckers congruence coefficient')
   [phi,out]=ncosine(Factors,Factors,DimX);
   disp(phi)
   disp(' ')
   if max(max(abs(phi)-diag(diag(phi))))>.85
      disp(' ')
      disp(' ')
      disp(' WARNING, SOME FACTORS ARE HIGHLY CORRELATED.')
      disp(' ')
      disp(' You could decrease the number of components. If this')
      disp(' does not help, try one of the following')
      disp(' ')
      disp(' - If systematic variation is still present you might')
      disp('   wanna decrease your convergence criterion and run')
      disp('   one more time using the loadings as initial guess.')
      disp(' ')
      disp(' - Or use another preprocessing (check for constant loadings)')
      disp(' ')
      disp(' - Otherwise try orthogonalising some modes,')
      disp(' ')
      disp(' - Or use Tucker3/Tucker2,')
      disp(' ')
      disp(' - Or a PARAFAC with some modes collapsed (if # modes > 3)')
      disp(' ')
   end
end


% SHOW FINAL OUTPUT
if DoWeight==0
   PercentExpl=100*(1-err/SSX);
else
   PercentExpl=100*(1-sum(sum((X-model).^2))/SSX);
end
if showfit~=-1
   fprintf(' %12.10f       %g        %3.4f \n',err,it,PercentExpl);
   if NumberOfInc>0
      disp([' There were ',num2str(NumberOfInc),' iterations that increased fit']);
   end
end

% POSTPROCES LOADINGS (ALL VARIANCE IN FIRST MODE)
A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
for i=2:ord
   B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
   for ff=1:Fac
      A(:,ff)=A(:,ff)*norm(B(:,ff));
      B(:,ff)=B(:,ff)/norm(B(:,ff));
   end
   Factors(lidx(i,1):lidx(i,2))=B(:);
end
Factors(lidx(1,1):lidx(1,2))=A(:);
if showfit~=-1
   disp(' ')
   disp(' Components have been normalized in all but the first mode')
end

% PERMUTE SO COMPONENTS ARE IN ORDER AFTER VARIANCE DESCRIBED (AS IN PCA) IF NO FIXED MODES
if ~any(FixMode)
   A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
   [out,order]=sort(diag(A'*A));
   order=flipud(order);
   A=A(:,order);
   Factors(lidx(1,1):lidx(1,2))=A(:);
   for i=2:ord
      B=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
      B=B(:,order);
      Factors(lidx(i,1):lidx(i,2))=B(:);
   end  
   if showfit~=-1
      disp(' Components have been ordered according to contribution')
   end
elseif showfit ~= -1
   disp(' Some modes fixed hence no sorting of components performed')
end

% APPLY SIGN CONVENTION IF NO FIXED MODES

%  FixMode=1
if ~any(FixMode)&~(any(const==2)|any(const==3))
   Sign = ones(1,Fac);
   for i=ord:-1:2
      A=reshape(Factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
      Sign2=ones(1,Fac);
      for ff=1:Fac
         [out,sig]=max(abs(A(:,ff)));
         Sign(ff) = Sign(ff)*sign(A(sig,ff));
         Sign2(ff) = sign(A(sig,ff));
      end
      A=A*diag(Sign2);
      Factors(lidx(i,1):lidx(i,2))=A(:);
   end 
   A=reshape(Factors(lidx(1,1):lidx(1,2)),DimX(1),Fac);
   A=A*diag(Sign);
   Factors(lidx(1,1):lidx(1,2))=A(:);
   if showfit~=-1
      disp(' Components have been reflected according to convention')
   end
   end 
% TOOLS FOR JUDGING SOLUTION
if nargout>3      
   x=X;
   if MissMeth
      x(id)=NaN*id;
   end
   corcondia=corcond(x,DimX,Fac,Factors,Weights,1);
end
if Plt==1|Plt==2
   pfplot(X,DimX,Factors,Weights,ones(1,8));
end
% Show which criterion stopped the algorithm
if showfit~=-1
   if ((f<crit) & (norm(connew-conold)/norm(conold)<MissConvCrit))
      disp(' The algorithm converged')
   elseif it==maxit
      disp(' The algorithm did not converge but stopped because the')
      disp(' maximum number of iterations was reached')
   elseif f<eps
      disp(' The algorithm stopped because the change in fit is now')
      disp(' smaller than the machine uncertainty.')
   else
      disp(' Algorithm stopped for some mysterious reason')
   end
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -