📄 tucker.m
字号:
function [Factors,G,ExplX,Xm]=tucker(X,DimX,Fac,Options,ConstrF,ConstrG,Factors,G);
%function [Factors,G,ExplX,Xm]=tucker(X,DimX,Fac[,Options[,ConstrF,[ConstrG[,Factors[,G]]]]]);
%
% $ Version 1.12 $ Date 14. Nov. 1999 $ Not compiled $
%
% Change: True LS unimodality now supported.
%
% This algorithm requires access to:
% 'fnipals' 'gsm' 'inituck' 'calcore'
% 'nmodel' 'nonneg' 'setopts' 'misssum'
% 'missmean' 't3core'
%
% See also:
% 'parafac' 'maxvar3' 'maxdia3' 'maxswd3'
%
% Copyright, 1998 -
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Claus A. Andersson
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% E-mail: claus@andersson.dk
%
% ---------------------------------------------------------
% The general N-way Tucker model
% ---------------------------------------------------------
%
% [Factors,G,ExplX,Xm]=tucker(X,DimX,Fac[,Options[,ConstrF,[ConstrG[,Factors[,G]]]]]);
% [Factors,G,ExplX,Xm]=tucker(X,DimX,Fac);
%
% X : The unfolded data.
% DimX : Row-vector describing the dimensions of X.
% Fac : Row-vector describing the number of factors
% in each of the N modes. A '-1' (minus one)
% will tell the algorithm not to estimate factors
% for this mode, yielding a Tucker2 model.
% Ex. [3 2 4]
% Options : See parafac.
% ConstrF : Constraints that must apply to 'Factors'.
% Define a row-vector of size N that describes how
% each mode should be treated.
% '0' orthogonality (default)
% '1' non-negativity
% '2' unconstrained
% '3' keep unchanged from users input 'Factors'.
% '4' unimodality and non-negativity.
% E.g.: [0 2 1] yields ortho in first mode, uncon in the second
% and non-neg in the third mode.
% Note: The algorithm uses random values if there are no
% non-negative components in the iteration intermediates. Thus,
% if non-negativity is applied, the iterations may be
% non-monotone in minor sequences.
% ConstrG : Constraints that must apply to 'G'.
% '[]' or '0' will not constrain the elements of 'G'.
% To define what core elements should be allowed, give a core that
% is 1 (one) on all active positions and zero elsewhere - this boolean
% core array must have the same dimensions as defined by 'Fac'.
% If 'ConstrG'==3 the core is kept constant as defined by input. If the
% core is fixed, the intermediate outputs will no longer correspond to the
% sum of squared core entries (would be constants)
% they will reflect some iteration intermediates.
% Factors : A row-vector containing the solutions.
% G : Core array that matches the dimensions defined by 'Fac'.
% ExplX :
% Xf : Models predictions of the missing elements
%
% This algorithm applies to the general N-way case, so
% the unfolded X can have any number of dimensions. The
% principles of 'projections' and 'systematic unfolding
% methodology (SUM)' are used in this algorithm to provide
% a fast approach - also for larger data arrays. This
% algorithm can handle missing values if denoted
% by NaN's. It can also be used to make TUCKER2 models by
% properly setting the elements of 'Fac' to -1.
%
% Note: When estimating a Tucker model on data using non-orthogonal factors,
% the sum of square of the core may differ between models of the
% same dataset. This is in order since the factors may
% thus be correlated. However, the expl. var. should always be the same.
%
format long
format compact
dbg=0;
if nargin==0,
help('tucker.m');
error(['Error calling ''tucker.m''. Since no input arguments were given, the ''help'' command was initiated.'])
return;
end;
if nargin<3,
help('tucker.m');
error(['Error calling ''tucker.m''. At least three (3) input arguments must be given. Read the text above.'])
return;
end;
if size(Fac,2)==1,
help('tucker.m');
error(['Error calling ''tucker.m''. ''Fac'' must be a row-vector.'])
end;
% Initialize system variables
N=size(Fac,2);
Fac_orig=Fac;
finda=find(Fac==-1);
if ~isempty(finda),
Fac(finda)=zeros(size(finda));
end;
FIdx0=cumsum([1 DimX(1:N-1).*Fac(1:N-1)]);
FIdx1=cumsum([DimX.*Fac]);
pmore=30;
pout=0;
Xm=[];
MissingExist=any(isnan(X(:)));
if MissingExist,
IdxIsNans=find(isnan(X));
end;
SSX=misssum(misssum(X.^2));
if exist('Options'),
Options_=Options;
else
Options_=[0];
end;
load noptiot3.mat;
i=find(Options_);
Options(i)=Options_(i);
if isnan(Options(5)),
prlvl = 0;
else
prlvl = 1;
end;
Options12=Options(1);
Options11=Options12*10;
Options21=Options(2);
Options31=Options(3);
Options41=Options(4);
Options51=Options(5);
Options61=Options(6);
Options71=Options(7);
Options81=Options(8);
Options91=Options(9);
Options101=Options(10);
if ~exist('ConstrF'),
ConstrF=[];
end;
if isempty(ConstrF),
ConstrF=zeros(size(DimX));
end;
if ConstrF==0 ,
ConstrF=zeros(size(DimX));
end;
if ~exist('ConstrG')
ConstrG=[];
end;
if isempty(ConstrG),
ConstrG=0;
end;
if ~exist('Factors'),
Factors=[];
end;
if ~exist('G'),
G=[];
end;
%Give a status/overview
if prlvl>0,
fprintf('\n\n');
fprintf('================= RESUME & PARAMETERS ===================\n');
fprintf('Array : %i-way array with dimensions (%s)\n',N,int2str(DimX));
if any(Fac==0),
fprintf('Model : (%s) TUCKER2 model\n',int2str(Fac));
else
fprintf('Model : (%s) TUCKER3 model\n',int2str(Fac));
end;
end
%Mth initialization
txt1=str2mat('derived by SVD (orthogonality constrained).');
txt1=str2mat(txt1,'derived by NIPALS (orthogonality constrained).');
txt1=str2mat(txt1,'derived by Gram-Schmidt (orthogonality constrained).');
txt1=str2mat(txt1,'This mode is not compressed/calculated, i.e., TUCKER2 model.');
txt1=str2mat(txt1,'derived by non-negativity least squares.');
txt1=str2mat(txt1,'derived by unconstrained simple least squares.');
txt1=str2mat(txt1,'unchanged, left as defined in input ''Factors''.');
txt1=str2mat(txt1,'derived by unimodality constrained regression.');
MethodO=1;
for k=1:N,
UpdateCore(k)=1;
if ConstrF(k)==0,
if Fac(k)>0,
if 0<DimX(k) & DimX(k)<=180,
Mth(k)=1;
end;
if 180<DimX(k) & DimX(k)<=Inf,
Mth(k)=3;
end;
if Fac(k)<=6 & 180<DimX(k),
Mth(k)=2;
end;
end;
UpdateWithPinv(k)=1; %Update with the L-LS-P-w/Kron approach
CalcOrdinar(k)=1;
end;
if ConstrF(k)==1,
Mth(k)=5; %nonneg
MethodO=2; %use the flexible scheme
UpdateCore(k)=1; %Update the core in this mode
CalcOrdinar(k)=1;
end;
if ConstrF(k)==2,
Mth(k)=6; %uncon
MethodO=2; %use the flexible scheme
UpdateCore(k)=1; %Update the core in this mode
CalcOrdinar(k)=1;
end;
if ConstrF(k)==3,
Mth(k)=7; %unchanged
MethodO=2;
UpdateCore(k)=1; %Update the core in this mode
CalcOrdinar(k)=1;
end;
if ConstrF(k)==4,
Mth(k)=8; %unimod
MethodO=2; %use the flexible scheme
UpdateCore(k)=1; %Update the core in this mode
CalcOrdinar(k)=1;
end;
if Fac_orig(k)==-1
Mth(k)=4;
UpdateCore(k)=0; %Do not update core for this mode
CalcOrdinar(k)=1;
end;
if Options91>=1,
if prlvl>0,
if Mth(k)~=4,
fprintf('Mode %i : %i factors %s\n',k,Fac(k),txt1(Mth(k),:));
else
fprintf('Mode %i : %s\n',k,txt1(Mth(k),:));
end;
end;
end;
end;
UserFactors=1;
if isempty(Factors),
UserFactors=0;
end;
usefacinput=0;
if MissingExist,
if ~UserFactors
[i j]=find(isnan(X));
mnx=missmean(X)/3;
mny=missmean(X')/3;
n=size(i,1);
for k=1:n,
i_=i(k);
j_=j(k);
X(i_,j_) = mny(i_) + mnx(j_);
end;
mnz=(missmean(mnx)+missmean(mny))/2;
p=find(isnan(X));
X(p)=mnz;
else
usefacinput=1;
Xm=nmodel(Factors,G,DimX,Fac_orig);
X(IdxIsNans)=Xm(IdxIsNans);
end;
SSMisOld=sum(sum( X(IdxIsNans).^2 ));
SSMis=SSMisOld;
end;
% Initialize the Factors by some method
UserFactors=1;
if isempty(Factors),
Factors=inituck(X,DimX,Fac_orig,2,[]);
UserFactors=0;
end;
% Initialize the core
Core_uncon=0;
Core_nonneg=0;
Core_cmplex=0;
Core_const=0;
G_cons=ConstrG;
if all(ConstrG(:)==1),
ConstrG=0;
end;
if ConstrG==0,
G=calcore(X,DimX,Fac_orig,Factors,[],1,MissingExist);
Core_uncon=1;
elseif prod(size(ConstrG)==[Fac(1) prod(Fac(2:N))]),
tmpM2=1;
for k=1:N;
if Mth(k)==4,
tmpM1=eye(DimX(k));
else
tmpM1=reshape(Factors(FIdx0(k):FIdx1(k)),DimX(k),Fac(k));
end;
tmpM2=ckron(tmpM2,tmpM1);
end
w=ConstrG(:);
fwz=find(w==1);
fwnn=find(w==2);
fwfix=find(w==3);
G=zeros(prod(Fac),1);
G(fwz)=tmpM2(:,fwz)\X(:);
enda=size(Fac,2); %!
G=reshape(G,Fac(1),prod(Fac(2:enda)));
Core_cmplex=1;
MethodO=2;
UpdateCore=2*ones(1,N);
elseif ConstrG==2,
G=calcore(X,DimX,Fac_orig,Factors,[],1,MissingExist);
G(find(G<0))=0;
Core_nonneg=1;
elseif ConstrG==3,
Core_const=1;
end;
if prlvl>0
fprintf('Type of algorithm : ');
if MethodO==1,
fprintf('Orthogonal projections.\n');
elseif MethodO==2,
fprintf('Flexible scheme.\n');
end;
fprintf('Core : ');
if Core_cmplex==1 & Core_nonneg==0,
fprintf('Unconstrained composite/sparse core.\n');
elseif Core_cmplex==1 & Core_nonneg==1,
fprintf('Non-negativity constrained and composite/sparse core.\n');
elseif Core_const==1,
fprintf('Fixed core.\n');
else
fprintf('Full unconstrained core.\n');
end;
end;
if prlvl>0,
if MissingExist,
if Options91>=1,
fprintf('Missing data : Yes, 2 active loops (expectation maximization).\n');
fprintf(' %i values (%.2f%%) out of %i are NaNs/missing.\n',prod(size(IdxIsNans)),100*prod(size(IdxIsNans))/prod(size(X)),prod(size(X)));
if usefacinput==0,
fprintf(' Missing values initialized from column and row means.\n');
else
fprintf(' Missing values initialized from model based on the given input.\n');
end;
fprintf('Convergence crit. 1 : %.5g (relative) sum of sq. core elements (corrected for missing values).\n',Options12);
fprintf('Convergence crit. 2 : %.5g (relative) sum of sq. of pred. missing values.\n',Options11);
fprintf('Iteration limit : %i is the maximum number of overall iterations.\n',Options61);
end;
else
if Options91>=1,
fprintf('Missing data : No, 1 active loop.\n');
fprintf('Convergence crit. 1 : %.5g (relative) sum of sq. core elements.\n',Options12);
fprintf('Iteration limit : %i is the maximum number of overall iterations.\n',Options61);
end;
end;
fprintf('\n');
if MissingExist,
str1=' Iter. 1 | Corrected sum of | Sum of sq. miss. | Expl. ';
str2=' # | sq. core elements | values | var. [%]';
fprintf('%s\n',str1);
fprintf('%s\n\n',str2);
else
str1=' Iter. 1 | Sum of | Expl. ';
str2=' # | sq. core elements | var. [%]';
fprintf('%s\n',str1);
fprintf('%s\n\n',str2);
end;
end;
Conv_true=0;
if MethodO==1, %Can use the faster projection technique
SSGOld=0;
Converged2=0;
it1=0;
itlim1=0;
t0=clock;
while ~Converged2,
Converged1=0;
while ~Converged1,
it1=it1+1;
% Iterate over the modes
for c=1:N,
%Compress the data by projections
if Mth(c)~=4,
CurDimX=DimX;
RedData=X;
for k=1:N;
if k~=c,
if Mth(k)~=4,
kthFactor=reshape(Factors(FIdx0(k):FIdx1(k)),DimX(k),Fac(k));
RedData=kthFactor'*RedData;
CurDimX(k)=Fac(k);
else
RedData=RedData;
end,
end,
if k~=N,
newi=CurDimX(k+1);
newj=prod(CurDimX)/newi;
else
newi=CurDimX(1);
newj=prod(CurDimX)/newi;
end;
RedData=reshape(RedData',newi,newj);
end;
%Reshape to the proper unfolding
for k=1:(c-1);
if k~=c,
newi=CurDimX(k+1);
newj=prod(CurDimX)/CurDimX(k+1);
else,
newi=CurDimX(1);
newj=prod(CurDimX)/CurDimX(1);
end;
RedData=reshape(RedData',newi,newj);
end;
%Find a basis in the projected space
%...using the robust SVD
if Mth(c)==1,
if MissingExist,
[U S V]=svd(RedData',0);
cthFactor=V(:,1:Fac(c));
else
[U S V]=svd(RedData',0);
cthFactor=V(:,1:Fac(c));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -