📄 unimodalcrossproducts.m
字号:
function B=unimodalcrossproducts(XtX,XtY,Bold)
% Solves the problem min|Y-XB'| subject to the columns of
% B are unimodal and nonnegative. The algorithm is iterative and
% only one iteration is given, hence the solution is only improving
% the current estimate
%
% I/O B=unimodalcrossproducts(XtX,XtY,Bold)
% Modified from unimodal.m to handle crossproducts in input 1999
%
% Copyright 1997
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
% rb@kvl.dk
%
% Reference
% Bro and Sidiropoulos, "Journal of Chemometrics", 1998, 12, 223-247.
B=Bold;
F=size(B,2);
for f=1:F
xty = XtY(f,:)-XtX(f,[1:f-1 f+1:F])*B(:,[1:f-1 f+1:F])';
beta=pinv(XtX(f,f))*xty;
B(:,f)=ulsr(beta',1);
end
function [b,All,MaxML]=ulsr(x,NonNeg);
% ------INPUT------
%
% x is the vector to be approximated
% NonNeg If NonNeg is one, nonnegativity is imposed
%
%
%
% ------OUTPUT-----
%
% b is the best ULSR vector
% All is containing in its i'th column the ULSRFIX solution for mode
% location at the i'th element. The ULSR solution given in All
% is found disregarding the i'th element and hence NOT optimal
% MaxML is the optimal (leftmost) mode location (i.e. position of maximum)
%
% ___________________________________________________________
%
%
% Copyright 1997
%
% Nikos Sidiroupolos
% University of Maryland
% Maryland, US
%
% &
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
%
%
% ___________________________________________________________
% This file uses MONREG.M
x=x(:);
I=length(x);
xmin=min(x);
if xmin<0
x=x-xmin;
end
% THE SUBSEQUENT
% CALCULATES BEST BY TWO MONOTONIC REGRESSIONS
% B1(1:i,i) contains the monontonic increasing regr. on x(1:i)
[b1,out,B1]=monreg(x);
% BI is the opposite of B1. Hence BI(i:I,i) holds the monotonic
% decreasing regression on x(i:I)
[bI,out,BI]=monreg(flipud(x));
BI=flipud(fliplr(BI));
% Together B1 and BI can be concatenated to give the solution to
% problem ULSR for any modloc position AS long as we do not pay
% attention to the element of x at this position
All=zeros(I,I+2);
All(1:I,3:I+2)=B1;
All(1:I,1:I)=All(1:I,1:I)+BI;
All=All(:,2:I+1);
Allmin=All;
Allmax=All;
% All(:,i) holds the ULSR solution for modloc = i, disregarding x(i),
iii=find(x>=max(All)');
b=All(:,iii(1));
b(iii(1))=x(iii(1));
Bestfit=sum((b-x).^2);
MaxML=iii(1);
for ii=2:length(iii)
this=All(:,iii(ii));
this(iii(ii))=x(iii(ii));
thisfit=sum((this-x).^2);
if thisfit<Bestfit
b=this;
Bestfit=thisfit;
MaxML=iii(ii);
end
end
if xmin<0
b=b+xmin;
end
% Impose nonnegativity
if NonNeg==1
if any(b<0)
id=find(b<0);
% Note that changing the negative values to zero does not affect the
% solution with respect to nonnegative parameters and position of the
% maximum.
b(id)=zeros(size(id))+0;
end
end
function [b,B,AllBs]=monreg(x);
% Monotonic regression according
% to J. B. Kruskal 64
%
% b = min|x-b| subject to monotonic increase
% B = b, but condensed
% AllBs = All monotonic regressions, i.e. AllBs(1:i,i) is the
% monotonic regression of x(1:i)
%
%
% Copyright 1997
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
% rb@kvl.dk
%
I=length(x);
if size(x,2)==2
B=x;
else
B=[x(:) ones(I,1)];
end
AllBs=zeros(I,I);
AllBs(1,1)=x(1);
i=1;
while i<size(B,1)
if B(i,1)>B(min(I,i+1),1)
summ=B(i,2)+B(i+1,2);
B=[B(1:i-1,:);[(B(i,1)*B(i,2)+B(i+1,1)*B(i+1,2))/(summ) summ];B(i+2:size(B,1),:)];
OK=1;
while OK
if B(i,1)<B(max(1,i-1),1)
summ=B(i,2)+B(i-1,2);
B=[B(1:i-2,:);[(B(i,1)*B(i,2)+B(i-1,1)*B(i-1,2))/(summ) summ];B(i+1:size(B,1),:)];
i=max(1,i-1);
else
OK=0;
end
end
bInterim=[];
for i2=1:i
bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
end
No=sum(B(1:i,2));
AllBs(1:No,No)=bInterim;
else
i=i+1;
bInterim=[];
for i2=1:i
bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
end
No=sum(B(1:i,2));
AllBs(1:No,No)=bInterim;
end
end
b=[];
for i=1:size(B,1)
b=[b;zeros(B(i,2),1)+B(i,1)];
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -