⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parafac2.m

📁 多维数据处理:MATLAB源程序用于处理多维数据
💻 M
📖 第 1 页 / 共 3 页
字号:
  Delta=5;
else
  Delta=max(2,Delta);
end

dA=A-Ao;
dB=B-Bo;
dC=C-Co;
Fit1=sum(sum(abs(X-A*ppp(B,C).').^2));
regx=[1 0 0 Fit1];
Fit2=sum(sum(abs(X-(A+Delta*dA)*ppp((B+Delta*dB),(C+Delta*dC)).').^2));
regx=[regx;1 Delta Delta.^2 Fit2];

while Fit2>Fit1
  if dbg
    disp('while Fit2>Fit1')
  end
  Delta=Delta*.6;
  Fit2=sum(sum(abs(X-(A+Delta*dA)*ppp((B+Delta*dB),(C+Delta*dC)).').^2));
  regx=[regx;1 Delta Delta.^2 Fit2];
end

Fit3=sum(sum(abs(X-(A+2*Delta*dA)*ppp((B+2*Delta*dB),(C+2*Delta*dC)).').^2));
regx=[regx;1 2*Delta (2*Delta).^2 Fit3];

while Fit3<Fit2
  if dbg
    disp('while Fit3<Fit2')
  end
  Delta=1.8*Delta;
  Fit2=Fit3;
  Fit3=sum(sum(abs(X-(A+2*Delta*dA)*ppp((B+2*Delta*dB),(C+2*Delta*dC)).').^2));
  regx=[regx;1 2*Delta (2*Delta).^2 Fit2];
end

% Add one point between the two smallest fits
[a,b]=sort(regx(:,4));
regx=regx(b,:);
Delta4=(regx(1,2)+regx(2,2))/2;
Fit4=sum(sum(abs(X-(A+Delta4*dA)*ppp((B+Delta4*dB),(C+Delta4*dC)).').^2));
regx=[regx;1 Delta4 Delta4.^2 Fit4];

%reg=pinv([1 0 0;1 Delta Delta^2;1 2*Delta (2*Delta)^2])*[Fit1;Fit2;Fit3]
reg=pinv(regx(:,1:3))*regx(:,4);
%DeltaMin=2*reg(3);

DeltaMin=-reg(2)/(2*reg(3));

%a*x2 + bx + c = fit
%2ax + b = 0
%x=-b/2a

NewA=A+DeltaMin*dA;
NewB=B+DeltaMin*dB;
NewC=C+DeltaMin*dC;
Fit=sum(sum(abs(X-NewA*ppp(NewB,NewC).').^2));

if dbg
  regx
  plot(regx(:,2),regx(:,4),'o'),
  hold on
  x=linspace(0,max(regx(:,2))*1.2);
  plot(x',[ones(100,1) x' x'.^2]*reg),
  hold off
  drawnow
  [DeltaMin Fit],pause
end

[minfit,number]=min(regx(:,4));
if Fit>minfit
  DeltaMin=regx(number,2);
  NewA=A+DeltaMin*dA;
  NewB=B+DeltaMin*dB;
  NewC=C+DeltaMin*dC;
end

function AB=ppp(A,B);

% $ Version 1.02 $ Date 28. July 1998 $ Not compiled $
%
% Copyright, 1998 - 
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Rasmus Bro
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% Phone  +45 35283296
% Fax    +45 35283245
% E-mail rb@kvl.dk
%
% The parallel proportional profiles product - triple-P product
% For two matrices with similar column dimension the triple-P product
% is ppp(A,B) = [kron(B(:,1),A(:,1) .... kron(B(:,F),A(:,F)]
% 
% AB = ppp(A,B);
%
% Copyright 1998
% Rasmus Bro
% KVL,DK
% rb@kvl.dk

[I,F]=size(A);
[J,F1]=size(B);

if F~=F1
   error(' Error in ppp.m - The matrices must have the same number of columns')
end

AB=zeros(I*J,F);
for f=1:F
   ab=A(:,f)*B(:,f).';
   AB(:,f)=ab(:);
end



function [x,w] = fastnnls(XtX,Xty,tol)
%NNLS	Non-negative least-squares.
%	b = fastnnls(XtX,Xty) returns the vector b that solves X*b = y
%	in a least squares sense, subject to b >= 0, given the inputs
%       XtX = X'*X and Xty = X'*y.
%
%	A default tolerance of TOL = MAX(SIZE(X)) * NORM(X,1) * EPS
%	is used for deciding when elements of b are less than zero.
%	This can be overridden with b = fastnnls(X,y,TOL).
%
%	[b,w] = fastnnls(XtX,Xty) also returns dual vector w where
%	w(i) < 0 where b(i) = 0 and w(i) = 0 where b(i) > 0.
%
%	See also LSCOV, SLASH.

%	L. Shure 5-8-87
%	Revised, 12-15-88,8-31-89 LS.
%	Copyright (c) 1984-94 by The MathWorks, Inc.

%       Revised by:
%	Copyright
%	Rasmus Bro 1995
%	Denmark
%	E-mail rb@kvl.dk
%       According to Bro & de Jong, J. Chemom, 1997

% initialize variables


if nargin < 3
    tol = 10*eps*norm(XtX,1)*max(size(XtX));
end
[m,n] = size(XtX);
P = zeros(1,n);
Z = 1:n;
x = P';
ZZ=Z;
w = Xty-XtX*x;

% set up iteration criterion
iter = 0;
itmax = 30*n;

% outer loop to put variables into set to hold positive coefficients
while any(Z) & any(w(ZZ) > tol)
    [wt,t] = max(w(ZZ));
    t = ZZ(t);
    P(1,t) = t;
    Z(t) = 0;
    PP = find(P);
    ZZ = find(Z);
    nzz = size(ZZ);
    z(PP')=(Xty(PP)'/XtX(PP,PP)');
    z(ZZ) = zeros(nzz(2),nzz(1))';
    z=z(:);
% inner loop to remove elements from the positive set which no longer belong

    while any((z(PP) <= tol)) & iter < itmax

        iter = iter + 1;
        QQ = find((z <= tol) & P');
        alpha = min(x(QQ)./(x(QQ) - z(QQ)));
        x = x + alpha*(z - x);
        ij = find(abs(x) < tol & P' ~= 0);
        Z(ij)=ij';
        P(ij)=zeros(1,max(size(ij)));
        PP = find(P);
        ZZ = find(Z);
        nzz = size(ZZ);
        z(PP)=(Xty(PP)'/XtX(PP,PP)');
        z(ZZ) = zeros(nzz(2),nzz(1));
        z=z(:);
    end
    x = z;
    w = Xty-XtX*x;
end

x=x(:);


function B=unimodalcrossproducts(XtX,XtY,Bold)

% Solves the problem min|Y-XB'| subject to the columns of 
% B are unimodal and nonnegative. The algorithm is iterative and
% only one iteration is given, hence the solution is only improving 
% the current estimate
%
% I/O B=unimodalcrossproducts(XtX,XtY,Bold)
% Modified from unimodal.m to handle crossproducts in input 1999
%
% Copyright 1997
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
% rb@kvl.dk
%
% Reference
% Bro and Sidiropoulos, "Journal of Chemometrics", 1998, 12, 223-247. 


B=Bold;
F=size(B,2);
for f=1:F
   xty = XtY(f,:)-XtX(f,[1:f-1 f+1:F])*B(:,[1:f-1 f+1:F])';
   beta=pinv(XtX(f,f))*xty;
   B(:,f)=ulsr(beta',1);
end


function [b,All,MaxML]=ulsr(x,NonNeg);

% ------INPUT------
%
% x          is the vector to be approximated
% NonNeg     If NonNeg is one, nonnegativity is imposed
%
%
%
% ------OUTPUT-----
%
% b 	     is the best ULSR vector
% All 	     is containing in its i'th column the ULSRFIX solution for mode
% 	     location at the i'th element. The ULSR solution given in All
%            is found disregarding the i'th element and hence NOT optimal
% MaxML      is the optimal (leftmost) mode location (i.e. position of maximum)
%
% ___________________________________________________________
%
%
%               Copyright 1997
%
% Nikos Sidiroupolos
% University of Maryland
% Maryland, US
%
%       &
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
%
% 
% ___________________________________________________________


% This file uses MONREG.M

x=x(:);
I=length(x);
xmin=min(x);
if xmin<0
  x=x-xmin;
end


% THE SUBSEQUENT 
% CALCULATES BEST BY TWO MONOTONIC REGRESSIONS

% B1(1:i,i) contains the monontonic increasing regr. on x(1:i)
[b1,out,B1]=monreg(x);

% BI is the opposite of B1. Hence BI(i:I,i) holds the monotonic
% decreasing regression on x(i:I)
[bI,out,BI]=monreg(flipud(x));
BI=flipud(fliplr(BI));

% Together B1 and BI can be concatenated to give the solution to
% problem ULSR for any modloc position AS long as we do not pay
% attention to the element of x at this position


All=zeros(I,I+2);
All(1:I,3:I+2)=B1;
All(1:I,1:I)=All(1:I,1:I)+BI;
All=All(:,2:I+1);
Allmin=All;
Allmax=All;
% All(:,i) holds the ULSR solution for modloc = i, disregarding x(i),


iii=find(x>=max(All)');
b=All(:,iii(1));
b(iii(1))=x(iii(1));
Bestfit=sum((b-x).^2);
MaxML=iii(1);
for ii=2:length(iii)
  this=All(:,iii(ii));
  this(iii(ii))=x(iii(ii));
  thisfit=sum((this-x).^2);
  if thisfit<Bestfit
    b=this;
    Bestfit=thisfit;
    MaxML=iii(ii);
  end
end

if xmin<0
  b=b+xmin;
end


% Impose nonnegativity
if NonNeg==1
  if any(b<0)
    id=find(b<0);
    % Note that changing the negative values to zero does not affect the
    % solution with respect to nonnegative parameters and position of the
    % maximum.
    b(id)=zeros(size(id))+0;
  end
end

function [b,B,AllBs]=monreg(x);

% Monotonic regression according
% to J. B. Kruskal 64
%
% b     = min|x-b| subject to monotonic increase
% B     = b, but condensed
% AllBs = All monotonic regressions, i.e. AllBs(1:i,i) is the 
%         monotonic regression of x(1:i)
%
%
% Copyright 1997
%
% Rasmus Bro
% Royal Veterinary & Agricultural University
% Denmark
% rb@kvl.dk
%


I=length(x);
if size(x,2)==2
   B=x;
else
   B=[x(:) ones(I,1)];
end

   AllBs=zeros(I,I);
   AllBs(1,1)=x(1);
   i=1;
   while i<size(B,1)
      if B(i,1)>B(min(I,i+1),1)
          summ=B(i,2)+B(i+1,2);
          B=[B(1:i-1,:);[(B(i,1)*B(i,2)+B(i+1,1)*B(i+1,2))/(summ) summ];B(i+2:size(B,1),:)];
          OK=1;
          while OK
             if B(i,1)<B(max(1,i-1),1)
                summ=B(i,2)+B(i-1,2);
                B=[B(1:i-2,:);[(B(i,1)*B(i,2)+B(i-1,1)*B(i-1,2))/(summ) summ];B(i+1:size(B,1),:)];
                i=max(1,i-1);
             else
                OK=0;
             end
          end
          bInterim=[];
          for i2=1:i
             bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
          end
          No=sum(B(1:i,2));
          AllBs(1:No,No)=bInterim;
      else
          i=i+1;
          bInterim=[];
          for i2=1:i
             bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
          end
          No=sum(B(1:i,2));
          AllBs(1:No,No)=bInterim;
      end
  end

  b=[];
  for i=1:size(B,1)
    b=[b;zeros(B(i,2),1)+B(i,1)];
 end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -