⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 addrs.h

📁 linux-2.6.15.6
💻 H
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1992-1999,2001-2005 Silicon Graphics, Inc. All rights reserved. */#ifndef _ASM_IA64_SN_ADDRS_H#define _ASM_IA64_SN_ADDRS_H#include <asm/percpu.h>#include <asm/sn/types.h>#include <asm/sn/arch.h>#include <asm/sn/pda.h>/* *  Memory/SHUB Address Format: *  +-+---------+--+--------------+ *  |0|  NASID  |AS| NodeOffset   | *  +-+---------+--+--------------+ * *  NASID: (low NASID bit is 0) Memory and SHUB MMRs *   AS: 2-bit Address Space Identifier. Used only if low NASID bit is 0 *     00: Local Resources and MMR space *           Top bit of NodeOffset *               0: Local resources space *                  node id: *                        0: IA64/NT compatibility space *                        2: Local MMR Space *                        4: Local memory, regardless of local node id *               1: Global MMR space *     01: GET space. *     10: AMO space. *     11: Cacheable memory space. * *   NodeOffset: byte offset * * *  TIO address format: *  +-+----------+--+--------------+ *  |0|  NASID   |AS| Nodeoffset   | *  +-+----------+--+--------------+ * *  NASID: (low NASID bit is 1) TIO *   AS: 2-bit Chiplet Identifier *     00: TIO LB (Indicates TIO MMR access.) *     01: TIO ICE (indicates coretalk space access.) *  *   NodeOffset: top bit must be set. * * * Note that in both of the above address formats, the low * NASID bit indicates if the reference is to the SHUB or TIO MMRs. *//* * Define basic shift & mask constants for manipulating NASIDs and AS values. */#define NASID_BITMASK		(sn_hub_info->nasid_bitmask)#define NASID_SHIFT		(sn_hub_info->nasid_shift)#define AS_SHIFT		(sn_hub_info->as_shift)#define AS_BITMASK		0x3UL#define NASID_MASK              ((u64)NASID_BITMASK << NASID_SHIFT)#define AS_MASK			((u64)AS_BITMASK << AS_SHIFT)/* * AS values. These are the same on both SHUB1 & SHUB2. */#define AS_GET_VAL		1UL#define AS_AMO_VAL		2UL#define AS_CAC_VAL		3UL#define AS_GET_SPACE		(AS_GET_VAL << AS_SHIFT)#define AS_AMO_SPACE		(AS_AMO_VAL << AS_SHIFT)#define AS_CAC_SPACE		(AS_CAC_VAL << AS_SHIFT)/*  * Virtual Mode Local & Global MMR space.   */#define SH1_LOCAL_MMR_OFFSET	0x8000000000UL#define SH2_LOCAL_MMR_OFFSET	0x0200000000UL#define LOCAL_MMR_OFFSET	(is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET)#define LOCAL_MMR_SPACE		(__IA64_UNCACHED_OFFSET | LOCAL_MMR_OFFSET)#define LOCAL_PHYS_MMR_SPACE	(RGN_BASE(RGN_HPAGE) | LOCAL_MMR_OFFSET)#define SH1_GLOBAL_MMR_OFFSET	0x0800000000UL#define SH2_GLOBAL_MMR_OFFSET	0x0300000000UL#define GLOBAL_MMR_OFFSET	(is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET)#define GLOBAL_MMR_SPACE	(__IA64_UNCACHED_OFFSET | GLOBAL_MMR_OFFSET)/* * Physical mode addresses */#define GLOBAL_PHYS_MMR_SPACE	(RGN_BASE(RGN_HPAGE) | GLOBAL_MMR_OFFSET)/* * Clear region & AS bits. */#define TO_PHYS_MASK		(~(RGN_BITS | AS_MASK))/* * Misc NASID manipulation. */#define NASID_SPACE(n)		((u64)(n) << NASID_SHIFT)#define REMOTE_ADDR(n,a)	(NASID_SPACE(n) | (a))#define NODE_OFFSET(x)		((x) & (NODE_ADDRSPACE_SIZE - 1))#define NODE_ADDRSPACE_SIZE     (1UL << AS_SHIFT)#define NASID_GET(x)		(int) (((u64) (x) >> NASID_SHIFT) & NASID_BITMASK)#define LOCAL_MMR_ADDR(a)	(LOCAL_MMR_SPACE | (a))#define GLOBAL_MMR_ADDR(n,a)	(GLOBAL_MMR_SPACE | REMOTE_ADDR(n,a))#define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a))#define GLOBAL_CAC_ADDR(n,a)	(CAC_BASE | REMOTE_ADDR(n,a))#define CHANGE_NASID(n,x)	((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n)))#define IS_TIO_NASID(n)		((n) & 1)/* non-II mmr's start at top of big window space (4G) */#define BWIN_TOP		0x0000000100000000UL/* * general address defines */#define CAC_BASE		(PAGE_OFFSET | AS_CAC_SPACE)#define AMO_BASE		(__IA64_UNCACHED_OFFSET | AS_AMO_SPACE)#define AMO_PHYS_BASE		(RGN_BASE(RGN_HPAGE) | AS_AMO_SPACE)#define GET_BASE		(PAGE_OFFSET | AS_GET_SPACE)/* * Convert Memory addresses between various addressing modes. */#define TO_PHYS(x)		(TO_PHYS_MASK & (x))#define TO_CAC(x)		(CAC_BASE     | TO_PHYS(x))#define TO_AMO(x)		(AMO_BASE     | TO_PHYS(x))#define TO_GET(x)		(GET_BASE     | TO_PHYS(x))/* * Covert from processor physical address to II/TIO physical address: *	II - squeeze out the AS bits *	TIO- requires a chiplet id in bits 38-39.  For DMA to memory, *           the chiplet id is zero.  If we implement TIO-TIO dma, we might need *           to insert a chiplet id into this macro.  However, it is our belief *           right now that this chiplet id will be ICE, which is also zero. */#define SH1_TIO_PHYS_TO_DMA(x) 						\	((((u64)(NASID_GET(x))) << 40) | NODE_OFFSET(x))#define SH2_NETWORK_BANK_OFFSET(x) 					\        ((u64)(x) & ((1UL << (sn_hub_info->nasid_shift - 4)) -1))#define SH2_NETWORK_BANK_SELECT(x) 					\        ((((u64)(x) & (0x3UL << (sn_hub_info->nasid_shift - 4)))	\        	>> (sn_hub_info->nasid_shift - 4)) << 36)#define SH2_NETWORK_ADDRESS(x) 						\	(SH2_NETWORK_BANK_OFFSET(x) | SH2_NETWORK_BANK_SELECT(x))#define SH2_TIO_PHYS_TO_DMA(x) 						\        (((u64)(NASID_GET(x)) << 40) | 	SH2_NETWORK_ADDRESS(x))#define PHYS_TO_TIODMA(x)						\	(is_shub1() ? SH1_TIO_PHYS_TO_DMA(x) : SH2_TIO_PHYS_TO_DMA(x))#define PHYS_TO_DMA(x)							\	((((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x))/* * Macros to test for address type. */#define IS_AMO_ADDRESS(x)	(((u64)(x) & (RGN_BITS | AS_MASK)) == AMO_BASE)#define IS_AMO_PHYS_ADDRESS(x)	(((u64)(x) & (RGN_BITS | AS_MASK)) == AMO_PHYS_BASE)/* * The following definitions pertain to the IO special address * space.  They define the location of the big and little windows * of any given node. */#define BWIN_SIZE_BITS			29	/* big window size: 512M */#define TIO_BWIN_SIZE_BITS		30	/* big window size: 1G */#define NODE_SWIN_BASE(n, w)		((w == 0) ? NODE_BWIN_BASE((n), SWIN0_BIGWIN) \		: RAW_NODE_SWIN_BASE(n, w))#define TIO_SWIN_BASE(n, w) 		(TIO_IO_BASE(n) + \					    ((u64) (w) << TIO_SWIN_SIZE_BITS))#define NODE_IO_BASE(n)			(GLOBAL_MMR_SPACE | NASID_SPACE(n))#define TIO_IO_BASE(n)                  (__IA64_UNCACHED_OFFSET | NASID_SPACE(n))#define BWIN_SIZE			(1UL << BWIN_SIZE_BITS)#define NODE_BWIN_BASE0(n)		(NODE_IO_BASE(n) + BWIN_SIZE)#define NODE_BWIN_BASE(n, w)		(NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS))#define RAW_NODE_SWIN_BASE(n, w)	(NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS))#define BWIN_WIDGET_MASK		0x7#define BWIN_WINDOWNUM(x)		(((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK)#define SH1_IS_BIG_WINDOW_ADDR(x)	((x) & BWIN_TOP)#define TIO_BWIN_WINDOW_SELECT_MASK	0x7#define TIO_BWIN_WINDOWNUM(x)		(((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK)#define TIO_HWIN_SHIFT_BITS		33#define TIO_HWIN(x)			(NODE_OFFSET(x) >> TIO_HWIN_SHIFT_BITS)/* * The following definitions pertain to the IO special address * space.  They define the location of the big and little windows * of any given node. */#define SWIN_SIZE_BITS			24#define	SWIN_WIDGET_MASK		0xF#define TIO_SWIN_SIZE_BITS		28#define TIO_SWIN_SIZE			(1UL << TIO_SWIN_SIZE_BITS)#define TIO_SWIN_WIDGET_MASK		0x3/* * Convert smallwindow address to xtalk address. * * 'addr' can be physical or virtual address, but will be converted * to Xtalk address in the range 0 -> SWINZ_SIZEMASK */#define	SWIN_WIDGETNUM(x)		(((x)  >> SWIN_SIZE_BITS) & SWIN_WIDGET_MASK)#define TIO_SWIN_WIDGETNUM(x)		(((x)  >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK)/* * The following macros produce the correct base virtual address for * the hub registers. The REMOTE_HUB_* macro produce * the address for the specified hub's registers.  The intent is * that the appropriate PI, MD, NI, or II register would be substituted * for x. * *   WARNING: *	When certain Hub chip workaround are defined, it's not sufficient *	to dereference the *_HUB_ADDR() macros.  You should instead use *	HUB_L() and HUB_S() if you must deal with pointers to hub registers. *	Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S(). *	They're always safe. *//* Shub1 TIO & MMR addressing macros */#define SH1_TIO_IOSPACE_ADDR(n,x)					\	GLOBAL_MMR_ADDR(n,x)#define SH1_REMOTE_BWIN_MMR(n,x)					\	GLOBAL_MMR_ADDR(n,x)#define SH1_REMOTE_SWIN_MMR(n,x)					\	(NODE_SWIN_BASE(n,1) + 0x800000UL + (x))#define SH1_REMOTE_MMR(n,x)						\	(SH1_IS_BIG_WINDOW_ADDR(x) ? SH1_REMOTE_BWIN_MMR(n,x) :		\	 	SH1_REMOTE_SWIN_MMR(n,x))/* Shub1 TIO & MMR addressing macros */#define SH2_TIO_IOSPACE_ADDR(n,x)					\	((__IA64_UNCACHED_OFFSET | REMOTE_ADDR(n,x) | 1UL << (NASID_SHIFT - 2)))#define SH2_REMOTE_MMR(n,x)						\	GLOBAL_MMR_ADDR(n,x)/* TIO & MMR addressing macros that work on both shub1 & shub2 */#define TIO_IOSPACE_ADDR(n,x)						\	((u64 *)(is_shub1() ? SH1_TIO_IOSPACE_ADDR(n,x) :		\		 SH2_TIO_IOSPACE_ADDR(n,x)))#define SH_REMOTE_MMR(n,x)						\	(is_shub1() ? SH1_REMOTE_MMR(n,x) : SH2_REMOTE_MMR(n,x))#define REMOTE_HUB_ADDR(n,x)						\	(IS_TIO_NASID(n) ?  ((volatile u64*)TIO_IOSPACE_ADDR(n,x)) :	\	 ((volatile u64*)SH_REMOTE_MMR(n,x)))#define HUB_L(x)			(*((volatile typeof(*x) *)x))#define	HUB_S(x,d)			(*((volatile typeof(*x) *)x) = (d))#define REMOTE_HUB_L(n, a)		HUB_L(REMOTE_HUB_ADDR((n), (a)))#define REMOTE_HUB_S(n, a, d)		HUB_S(REMOTE_HUB_ADDR((n), (a)), (d))#endif /* _ASM_IA64_SN_ADDRS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -