⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mach64_ct.c

📁 linux-2.6.15.6
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  ATI Mach64 CT/VT/GT/LT Support */#include <linux/fb.h>#include <linux/delay.h>#include <asm/io.h>#include <video/mach64.h>#include "atyfb.h"#undef DEBUGstatic int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll);static int aty_dsp_gt       (const struct fb_info *info, u32 bpp, struct pll_ct *pll);static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll);static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll);u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par){	u8 res;	/* write addr byte */	aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par);	/* read the register value */	res = aty_ld_8(CLOCK_CNTL_DATA, par);	return res;}void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par){	/* write addr byte */	aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par);	/* write the register value */	aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par);	aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par);}/* * by Daniel Mantione *                                  <daniel.mantione@freepascal.org> * * * ATI Mach64 CT clock synthesis description. * * All clocks on the Mach64 can be calculated using the same principle: * *       XTALIN * x * FB_DIV * CLK = ---------------------- *       PLL_REF_DIV * POST_DIV * * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz. * PLL_REF_DIV can be set by the user, but is the same for all clocks. * FB_DIV can be set by the user for each clock individually, it should be set * between 128 and 255, the chip will generate a bad clock signal for too low * values. * x depends on the type of clock; usually it is 2, but for the MCLK it can also * be set to 4. * POST_DIV can be set by the user for each clock individually, Possible values * are 1,2,4,8 and for some clocks other values are available too. * CLK is of course the clock speed that is generated. * * The Mach64 has these clocks: * * MCLK			The clock rate of the chip * XCLK			The clock rate of the on-chip memory * VCLK0		First pixel clock of first CRT controller * VCLK1    Second pixel clock of first CRT controller * VCLK2		Third pixel clock of first CRT controller * VCLK3    Fourth pixel clock of first CRT controller * VCLK			Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3 * V2CLK		Pixel clock of the second CRT controller. * SCLK			Multi-purpose clock * * - MCLK and XCLK use the same FB_DIV * - VCLK0 .. VCLK3 use the same FB_DIV * - V2CLK is needed when the second CRTC is used (can be used for dualhead); *   i.e. CRT monitor connected to laptop has different resolution than built *   in LCD monitor. * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO, *   Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT. * - V2CLK is not available on all cards, most likely only the Rage LT-PRO, *   the Rage XL and the Rage Mobility * * SCLK can be used to: * - Clock the chip instead of MCLK * - Replace XTALIN with a user defined frequency * - Generate the pixel clock for the LCD monitor (instead of VCLK) */ /*  * It can be quite hard to calculate XCLK and MCLK if they don't run at the  * same frequency. Luckily, until now all cards that need asynchrone clock  * speeds seem to have SCLK.  * So this driver uses SCLK to clock the chip and XCLK to clock the memory.  *//* ------------------------------------------------------------------------- *//* *  PLL programming (Mach64 CT family) * * * This procedure sets the display fifo. The display fifo is a buffer that * contains data read from the video memory that waits to be processed by * the CRT controller. * * On the more modern Mach64 variants, the chip doesn't calculate the * interval after which the display fifo has to be reloaded from memory * automatically, the driver has to do it instead. */#define Maximum_DSP_PRECISION 7static u8 postdividers[] = {1,2,4,8,3};static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll){	u32 dsp_off, dsp_on, dsp_xclks;	u32 multiplier, divider, ras_multiplier, ras_divider, tmp;	u8 vshift, xshift;	s8 dsp_precision;	multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real;	divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div;	ras_multiplier = pll->xclkmaxrasdelay;	ras_divider = 1;	if (bpp>=8)		divider = divider * (bpp >> 2);	vshift = (6 - 2) - pll->xclk_post_div;	/* FIFO is 64 bits wide in accelerator mode ... */	if (bpp == 0)		vshift--;	/* ... but only 32 bits in VGA mode. */#ifdef CONFIG_FB_ATY_GENERIC_LCD	if (pll->xres != 0) {		struct atyfb_par *par = (struct atyfb_par *) info->par;		multiplier = multiplier * par->lcd_width;		divider = divider * pll->xres & ~7;		ras_multiplier = ras_multiplier * par->lcd_width;		ras_divider = ras_divider * pll->xres & ~7;	}#endif	/* If we don't do this, 32 bits for multiplier & divider won't be	enough in certain situations! */	while (((multiplier | divider) & 1) == 0) {		multiplier = multiplier >> 1;		divider = divider >> 1;	}	/* Determine DSP precision first */	tmp = ((multiplier * pll->fifo_size) << vshift) / divider;	for (dsp_precision = -5;  tmp;  dsp_precision++)		tmp >>= 1;	if (dsp_precision < 0)		dsp_precision = 0;	else if (dsp_precision > Maximum_DSP_PRECISION)		dsp_precision = Maximum_DSP_PRECISION;	xshift = 6 - dsp_precision;	vshift += xshift;	/* Move on to dsp_off */	dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider -		(1 << (vshift - xshift));/*    if (bpp == 0)        dsp_on = ((multiplier * 20 << vshift) + divider) / divider;    else */	{		dsp_on = ((multiplier << vshift) + divider) / divider;		tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider;		if (dsp_on < tmp)		dsp_on = tmp;		dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift);	}	/* Calculate rounding factor and apply it to dsp_on */	tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1;	dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1);	if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) {		dsp_on = dsp_off - (multiplier << vshift) / divider;		dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1);	}	/* Last but not least:  dsp_xclks */	dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider;	/* Get register values. */	pll->dsp_on_off = (dsp_on << 16) + dsp_off;	pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks;#ifdef DEBUG	printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n",		__FUNCTION__, pll->dsp_config, pll->dsp_on_off);#endif	return 0;}static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll){	u32 q;	struct atyfb_par *par = (struct atyfb_par *) info->par;#ifdef DEBUG	int pllvclk;#endif	/* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */	q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per;	if (q < 16*8 || q > 255*8) {		printk(KERN_CRIT "atyfb: vclk out of range\n");		return -EINVAL;	} else {		pll->vclk_post_div  = (q < 128*8);		pll->vclk_post_div += (q <  64*8);		pll->vclk_post_div += (q <  32*8);	}	pll->vclk_post_div_real = postdividers[pll->vclk_post_div];	//    pll->vclk_post_div <<= 6;	pll->vclk_fb_div = q * pll->vclk_post_div_real / 8;#ifdef DEBUG	pllvclk = (1000000 * 2 * pll->vclk_fb_div) /		(par->ref_clk_per * pll->pll_ref_div);	printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n",		__FUNCTION__, pllvclk, pllvclk / pll->vclk_post_div_real);#endif	pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */	return 0;}static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll){	struct atyfb_par *par = (struct atyfb_par *) info->par;	int err;	if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct)))		return err;	if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct)))		return err;	/*aty_calc_pll_ct(info, &pll->ct);*/	return 0;}static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll){	struct atyfb_par *par = (struct atyfb_par *) info->par;	u32 ret;	ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2;#ifdef CONFIG_FB_ATY_GENERIC_LCD	if(pll->ct.xres > 0) {		ret *= par->lcd_width;		ret /= pll->ct.xres;	}#endif#ifdef DEBUG	printk("atyfb(%s): calculated 0x%08X(%i)\n", __FUNCTION__, ret, ret);#endif	return ret;}void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll){	struct atyfb_par *par = (struct atyfb_par *) info->par;	u32 crtc_gen_cntl, lcd_gen_cntrl;	u8 tmp, tmp2;	lcd_gen_cntrl = 0;#ifdef DEBUG	printk("atyfb(%s): about to program:\n"		"pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n",		__FUNCTION__,		pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl);	printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n",		__FUNCTION__,		par->clk_wr_offset, pll->ct.vclk_fb_div,		pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real);#endif#ifdef CONFIG_FB_ATY_GENERIC_LCD	if (par->lcd_table != 0) {		/* turn off LCD */		lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par);		aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par);	}#endif	aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par);	/* Temporarily switch to accelerator mode */	crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par);	if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))		aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par);	/* Reset VCLK generator */	aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);	/* Set post-divider */	tmp2 = par->clk_wr_offset << 1;	tmp = aty_ld_pll_ct(VCLK_POST_DIV, par);	tmp &= ~(0x03U << tmp2);	tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2);	aty_st_pll_ct(VCLK_POST_DIV, tmp, par);	/* Set extended post-divider */	tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par);	tmp &= ~(0x10U << par->clk_wr_offset);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -