⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e1000_hw.c

📁 linux-2.6.15.6
💻 C
📖 第 1 页 / 共 5 页
字号:
        case e1000_82573:            ctrl |= E1000_TXDCTL_COUNT_DESC;            break;        }        E1000_WRITE_REG(hw, TXDCTL, ctrl);    }    if (hw->mac_type == e1000_82573) {        e1000_enable_tx_pkt_filtering(hw);     }    switch (hw->mac_type) {    default:        break;    case e1000_82571:    case e1000_82572:        ctrl = E1000_READ_REG(hw, TXDCTL1);        ctrl &= ~E1000_TXDCTL_WTHRESH;        ctrl |= E1000_TXDCTL_COUNT_DESC | E1000_TXDCTL_FULL_TX_DESC_WB;        ctrl |= (1 << 22);        E1000_WRITE_REG(hw, TXDCTL1, ctrl);        break;    }    if (hw->mac_type == e1000_82573) {        uint32_t gcr = E1000_READ_REG(hw, GCR);        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;        E1000_WRITE_REG(hw, GCR, gcr);    }    /* Clear all of the statistics registers (clear on read).  It is     * important that we do this after we have tried to establish link     * because the symbol error count will increment wildly if there     * is no link.     */    e1000_clear_hw_cntrs(hw);    return ret_val;}/****************************************************************************** * Adjust SERDES output amplitude based on EEPROM setting. * * hw - Struct containing variables accessed by shared code. *****************************************************************************/static int32_te1000_adjust_serdes_amplitude(struct e1000_hw *hw){    uint16_t eeprom_data;    int32_t  ret_val;    DEBUGFUNC("e1000_adjust_serdes_amplitude");    if(hw->media_type != e1000_media_type_internal_serdes)        return E1000_SUCCESS;    switch(hw->mac_type) {    case e1000_82545_rev_3:    case e1000_82546_rev_3:        break;    default:        return E1000_SUCCESS;    }    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);    if (ret_val) {        return ret_val;    }    if(eeprom_data != EEPROM_RESERVED_WORD) {        /* Adjust SERDES output amplitude only. */        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);        if(ret_val)            return ret_val;    }    return E1000_SUCCESS;}/****************************************************************************** * Configures flow control and link settings. * * hw - Struct containing variables accessed by shared code * * Determines which flow control settings to use. Calls the apropriate media- * specific link configuration function. Configures the flow control settings. * Assuming the adapter has a valid link partner, a valid link should be * established. Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. *****************************************************************************/int32_te1000_setup_link(struct e1000_hw *hw){    uint32_t ctrl_ext;    int32_t ret_val;    uint16_t eeprom_data;    DEBUGFUNC("e1000_setup_link");    /* Read and store word 0x0F of the EEPROM. This word contains bits     * that determine the hardware's default PAUSE (flow control) mode,     * a bit that determines whether the HW defaults to enabling or     * disabling auto-negotiation, and the direction of the     * SW defined pins. If there is no SW over-ride of the flow     * control setting, then the variable hw->fc will     * be initialized based on a value in the EEPROM.     */    if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {        DEBUGOUT("EEPROM Read Error\n");        return -E1000_ERR_EEPROM;    }    if(hw->fc == e1000_fc_default) {        if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)            hw->fc = e1000_fc_none;        else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==                EEPROM_WORD0F_ASM_DIR)            hw->fc = e1000_fc_tx_pause;        else            hw->fc = e1000_fc_full;    }    /* We want to save off the original Flow Control configuration just     * in case we get disconnected and then reconnected into a different     * hub or switch with different Flow Control capabilities.     */    if(hw->mac_type == e1000_82542_rev2_0)        hw->fc &= (~e1000_fc_tx_pause);    if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))        hw->fc &= (~e1000_fc_rx_pause);    hw->original_fc = hw->fc;    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);    /* Take the 4 bits from EEPROM word 0x0F that determine the initial     * polarity value for the SW controlled pins, and setup the     * Extended Device Control reg with that info.     * This is needed because one of the SW controlled pins is used for     * signal detection.  So this should be done before e1000_setup_pcs_link()     * or e1000_phy_setup() is called.     */    if(hw->mac_type == e1000_82543) {        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<                    SWDPIO__EXT_SHIFT);        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);    }    /* Call the necessary subroutine to configure the link. */    ret_val = (hw->media_type == e1000_media_type_copper) ?              e1000_setup_copper_link(hw) :              e1000_setup_fiber_serdes_link(hw);    /* Initialize the flow control address, type, and PAUSE timer     * registers to their default values.  This is done even if flow     * control is disabled, because it does not hurt anything to     * initialize these registers.     */    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");    E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);    E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);    E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);    /* Set the flow control receive threshold registers.  Normally,     * these registers will be set to a default threshold that may be     * adjusted later by the driver's runtime code.  However, if the     * ability to transmit pause frames in not enabled, then these     * registers will be set to 0.     */    if(!(hw->fc & e1000_fc_tx_pause)) {        E1000_WRITE_REG(hw, FCRTL, 0);        E1000_WRITE_REG(hw, FCRTH, 0);    } else {        /* We need to set up the Receive Threshold high and low water marks         * as well as (optionally) enabling the transmission of XON frames.         */        if(hw->fc_send_xon) {            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);        } else {            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);        }    }    return ret_val;}/****************************************************************************** * Sets up link for a fiber based or serdes based adapter * * hw - Struct containing variables accessed by shared code * * Manipulates Physical Coding Sublayer functions in order to configure * link. Assumes the hardware has been previously reset and the transmitter * and receiver are not enabled. *****************************************************************************/static int32_te1000_setup_fiber_serdes_link(struct e1000_hw *hw){    uint32_t ctrl;    uint32_t status;    uint32_t txcw = 0;    uint32_t i;    uint32_t signal = 0;    int32_t ret_val;    DEBUGFUNC("e1000_setup_fiber_serdes_link");    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists     * until explicitly turned off or a power cycle is performed.  A read to     * the register does not indicate its status.  Therefore, we ensure     * loopback mode is disabled during initialization.     */    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)        E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be     * set when the optics detect a signal. On older adapters, it will be     * cleared when there is a signal.  This applies to fiber media only.     * If we're on serdes media, adjust the output amplitude to value set in     * the EEPROM.     */    ctrl = E1000_READ_REG(hw, CTRL);    if(hw->media_type == e1000_media_type_fiber)        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;    ret_val = e1000_adjust_serdes_amplitude(hw);    if(ret_val)        return ret_val;    /* Take the link out of reset */    ctrl &= ~(E1000_CTRL_LRST);    /* Adjust VCO speed to improve BER performance */    ret_val = e1000_set_vco_speed(hw);    if(ret_val)        return ret_val;    e1000_config_collision_dist(hw);    /* Check for a software override of the flow control settings, and setup     * the device accordingly.  If auto-negotiation is enabled, then software     * will have to set the "PAUSE" bits to the correct value in the Tranmsit     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if     * auto-negotiation is disabled, then software will have to manually     * configure the two flow control enable bits in the CTRL register.     *     * The possible values of the "fc" parameter are:     *      0:  Flow control is completely disabled     *      1:  Rx flow control is enabled (we can receive pause frames, but     *          not send pause frames).     *      2:  Tx flow control is enabled (we can send pause frames but we do     *          not support receiving pause frames).     *      3:  Both Rx and TX flow control (symmetric) are enabled.     */    switch (hw->fc) {    case e1000_fc_none:        /* Flow control is completely disabled by a software over-ride. */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);        break;    case e1000_fc_rx_pause:        /* RX Flow control is enabled and TX Flow control is disabled by a         * software over-ride. Since there really isn't a way to advertise         * that we are capable of RX Pause ONLY, we will advertise that we         * support both symmetric and asymmetric RX PAUSE. Later, we will         *  disable the adapter's ability to send PAUSE frames.         */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);        break;    case e1000_fc_tx_pause:        /* TX Flow control is enabled, and RX Flow control is disabled, by a         * software over-ride.         */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);        break;    case e1000_fc_full:        /* Flow control (both RX and TX) is enabled by a software over-ride. */        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);        break;    default:        DEBUGOUT("Flow control param set incorrectly\n");        return -E1000_ERR_CONFIG;        break;    }    /* Since auto-negotiation is enabled, take the link out of reset (the link     * will be in reset, because we previously reset the chip). This will     * restart auto-negotiation.  If auto-neogtiation is successful then the     * link-up status bit will be set and the flow control enable bits (RFCE     * and TFCE) will be set according to their negotiated value.     */    DEBUGOUT("Auto-negotiation enabled\n");    E1000_WRITE_REG(hw, TXCW, txcw);    E1000_WRITE_REG(hw, CTRL, ctrl);    E1000_WRITE_FLUSH(hw);    hw->txcw = txcw;    msec_delay(1);    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"     * indication in the Device Status Register.  Time-out if a link isn't     * seen in 500 milliseconds seconds (Auto-negotiation should complete in     * less than 500 milliseconds even if the other end is doing it in SW).     * For internal serdes, we just assume a signal is present, then poll.     */    if(hw->media_type == e1000_media_type_internal_serdes ||       (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {        DEBUGOUT("Looking for Link\n");        for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {            msec_delay(10);            status = E1000_READ_REG(hw, STATUS);            if(status & E1000_STATUS_LU) break;        }        if(i == (LINK_UP_TIMEOUT / 10)) {            DEBUGOUT("Never got a valid link from auto-neg!!!\n");            hw->autoneg_failed = 1;            /* AutoNeg failed to achieve a link, so we'll call             * e1000_check_for_link. This routine will force the link up if             * we detect a signal. This will allow us to communicate with             * non-autonegotiating link partners.             */            ret_val = e1000_check_for_link(hw);            if(ret_val) {                DEBUGOUT("Error while checking for link\n");                return ret_val;            }            hw->autoneg_failed = 0;        } else {            hw->autoneg_failed = 0;            DEBUGOUT("Valid Link Found\n");        }    } else {        DEBUGOUT("No Signal Detected\n");    }    return E1000_SUCCESS;}/******************************************************************************* Make sure we have a valid PHY and change PHY mode before link setup.** hw - Struct containing variables accessed by shared code******************************************************************************/static int32_te1000_copper_link_preconfig(struct e1000_hw *hw){    uint32_t ctrl;    int32_t ret_val;    uint16_t phy_data;    DEBUGFUNC("e1000_copper_link_preconfig");    ctrl = E1000_READ_REG(hw, CTRL);    /* With 82543, we need to force speed and duplex on the MAC equal to what     * the PHY speed and duplex configuration is. In addition, we need to     * perform a hardware reset on the PHY to take it out of reset.     */    if(hw->mac_type > e1000_82543) {        ctrl |= E1000_CTRL_SLU;        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);        E1000_WRITE_REG(hw, CTRL, ctrl);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -