📄 6pack.c
字号:
/* * 6pack.c This module implements the 6pack protocol for kernel-based * devices like TTY. It interfaces between a raw TTY and the * kernel's AX.25 protocol layers. * * Authors: Andreas K鰊sgen <ajk@iehk.rwth-aachen.de> * Ralf Baechle DL5RB <ralf@linux-mips.org> * * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by * * Laurence Culhane, <loz@holmes.demon.co.uk> * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> */#include <linux/config.h>#include <linux/module.h>#include <asm/system.h>#include <asm/uaccess.h>#include <linux/bitops.h>#include <linux/string.h>#include <linux/mm.h>#include <linux/interrupt.h>#include <linux/in.h>#include <linux/tty.h>#include <linux/errno.h>#include <linux/netdevice.h>#include <linux/timer.h>#include <net/ax25.h>#include <linux/etherdevice.h>#include <linux/skbuff.h>#include <linux/rtnetlink.h>#include <linux/spinlock.h>#include <linux/if_arp.h>#include <linux/init.h>#include <linux/ip.h>#include <linux/tcp.h>#include <asm/semaphore.h>#include <asm/atomic.h>#define SIXPACK_VERSION "Revision: 0.3.0"/* sixpack priority commands */#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */#define SIXP_TX_URUN 0x48 /* transmit overrun */#define SIXP_RX_ORUN 0x50 /* receive overrun */#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame *//* masks to get certain bits out of the status bytes sent by the TNC */#define SIXP_CMD_MASK 0xC0#define SIXP_CHN_MASK 0x07#define SIXP_PRIO_CMD_MASK 0x80#define SIXP_STD_CMD_MASK 0x40#define SIXP_PRIO_DATA_MASK 0x38#define SIXP_TX_MASK 0x20#define SIXP_RX_MASK 0x10#define SIXP_RX_DCD_MASK 0x18#define SIXP_LEDS_ON 0x78#define SIXP_LEDS_OFF 0x60#define SIXP_CON 0x08#define SIXP_STA 0x10#define SIXP_FOUND_TNC 0xe9#define SIXP_CON_ON 0x68#define SIXP_DCD_MASK 0x08#define SIXP_DAMA_OFF 0/* default level 2 parameters */#define SIXP_TXDELAY (HZ/4) /* in 1 s */#define SIXP_PERSIST 50 /* in 256ths */#define SIXP_SLOTTIME (HZ/10) /* in 1 s */#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s *//* 6pack configuration. */#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */#define SIXP_MTU 256 /* Default MTU */enum sixpack_flags { SIXPF_ERROR, /* Parity, etc. error */};struct sixpack { /* Various fields. */ struct tty_struct *tty; /* ptr to TTY structure */ struct net_device *dev; /* easy for intr handling */ /* These are pointers to the malloc()ed frame buffers. */ unsigned char *rbuff; /* receiver buffer */ int rcount; /* received chars counter */ unsigned char *xbuff; /* transmitter buffer */ unsigned char *xhead; /* next byte to XMIT */ int xleft; /* bytes left in XMIT queue */ unsigned char raw_buf[4]; unsigned char cooked_buf[400]; unsigned int rx_count; unsigned int rx_count_cooked; /* 6pack interface statistics. */ struct net_device_stats stats; int mtu; /* Our mtu (to spot changes!) */ int buffsize; /* Max buffers sizes */ unsigned long flags; /* Flag values/ mode etc */ unsigned char mode; /* 6pack mode */ /* 6pack stuff */ unsigned char tx_delay; unsigned char persistence; unsigned char slottime; unsigned char duplex; unsigned char led_state; unsigned char status; unsigned char status1; unsigned char status2; unsigned char tx_enable; unsigned char tnc_state; struct timer_list tx_t; struct timer_list resync_t; atomic_t refcnt; struct semaphore dead_sem; spinlock_t lock;};#define AX25_6PACK_HEADER_LEN 0static void sixpack_decode(struct sixpack *, unsigned char[], int);static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);/* * Perform the persistence/slottime algorithm for CSMA access. If the * persistence check was successful, write the data to the serial driver. * Note that in case of DAMA operation, the data is not sent here. */static void sp_xmit_on_air(unsigned long channel){ struct sixpack *sp = (struct sixpack *) channel; int actual, when = sp->slottime; static unsigned char random; random = random * 17 + 41; if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) { sp->led_state = 0x70; sp->tty->driver->write(sp->tty, &sp->led_state, 1); sp->tx_enable = 1; actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2); sp->xleft -= actual; sp->xhead += actual; sp->led_state = 0x60; sp->tty->driver->write(sp->tty, &sp->led_state, 1); sp->status2 = 0; } else mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);}/* ----> 6pack timer interrupt handler and friends. <---- *//* Encapsulate one AX.25 frame and stuff into a TTY queue. */static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len){ unsigned char *msg, *p = icp; int actual, count; if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ msg = "oversized transmit packet!"; goto out_drop; } if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ msg = "oversized transmit packet!"; goto out_drop; } if (p[0] > 5) { msg = "invalid KISS command"; goto out_drop; } if ((p[0] != 0) && (len > 2)) { msg = "KISS control packet too long"; goto out_drop; } if ((p[0] == 0) && (len < 15)) { msg = "bad AX.25 packet to transmit"; goto out_drop; } count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay); set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); switch (p[0]) { case 1: sp->tx_delay = p[1]; return; case 2: sp->persistence = p[1]; return; case 3: sp->slottime = p[1]; return; case 4: /* ignored */ return; case 5: sp->duplex = p[1]; return; } if (p[0] != 0) return; /* * In case of fullduplex or DAMA operation, we don't take care about the * state of the DCD or of any timers, as the determination of the * correct time to send is the job of the AX.25 layer. We send * immediately after data has arrived. */ if (sp->duplex == 1) { sp->led_state = 0x70; sp->tty->driver->write(sp->tty, &sp->led_state, 1); sp->tx_enable = 1; actual = sp->tty->driver->write(sp->tty, sp->xbuff, count); sp->xleft = count - actual; sp->xhead = sp->xbuff + actual; sp->led_state = 0x60; sp->tty->driver->write(sp->tty, &sp->led_state, 1); } else { sp->xleft = count; sp->xhead = sp->xbuff; sp->status2 = count; sp_xmit_on_air((unsigned long)sp); } return;out_drop: sp->stats.tx_dropped++; netif_start_queue(sp->dev); if (net_ratelimit()) printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);}/* Encapsulate an IP datagram and kick it into a TTY queue. */static int sp_xmit(struct sk_buff *skb, struct net_device *dev){ struct sixpack *sp = netdev_priv(dev); spin_lock_bh(&sp->lock); /* We were not busy, so we are now... :-) */ netif_stop_queue(dev); sp->stats.tx_bytes += skb->len; sp_encaps(sp, skb->data, skb->len); spin_unlock_bh(&sp->lock); dev_kfree_skb(skb); return 0;}static int sp_open_dev(struct net_device *dev){ struct sixpack *sp = netdev_priv(dev); if (sp->tty == NULL) return -ENODEV; return 0;}/* Close the low-level part of the 6pack channel. */static int sp_close(struct net_device *dev){ struct sixpack *sp = netdev_priv(dev); spin_lock_bh(&sp->lock); if (sp->tty) { /* TTY discipline is running. */ clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags); } netif_stop_queue(dev); spin_unlock_bh(&sp->lock); return 0;}/* Return the frame type ID */static int sp_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len){#ifdef CONFIG_INET if (type != htons(ETH_P_AX25)) return ax25_hard_header(skb, dev, type, daddr, saddr, len);#endif return 0;}static struct net_device_stats *sp_get_stats(struct net_device *dev){ struct sixpack *sp = netdev_priv(dev); return &sp->stats;}static int sp_set_mac_address(struct net_device *dev, void *addr){ struct sockaddr_ax25 *sa = addr; spin_lock_irq(&dev->xmit_lock); memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN); spin_unlock_irq(&dev->xmit_lock); return 0;}static int sp_rebuild_header(struct sk_buff *skb){#ifdef CONFIG_INET return ax25_rebuild_header(skb);#else return 0;#endif}static void sp_setup(struct net_device *dev){ static char ax25_bcast[AX25_ADDR_LEN] = {'Q'<<1,'S'<<1,'T'<<1,' '<<1,' '<<1,' '<<1,'0'<<1}; static char ax25_test[AX25_ADDR_LEN] = {'L'<<1,'I'<<1,'N'<<1,'U'<<1,'X'<<1,' '<<1,'1'<<1}; /* Finish setting up the DEVICE info. */ dev->mtu = SIXP_MTU; dev->hard_start_xmit = sp_xmit; dev->open = sp_open_dev; dev->destructor = free_netdev; dev->stop = sp_close; dev->hard_header = sp_header; dev->get_stats = sp_get_stats; dev->set_mac_address = sp_set_mac_address; dev->hard_header_len = AX25_MAX_HEADER_LEN; dev->addr_len = AX25_ADDR_LEN; dev->type = ARPHRD_AX25; dev->tx_queue_len = 10; dev->rebuild_header = sp_rebuild_header; dev->tx_timeout = NULL; /* Only activated in AX.25 mode */ memcpy(dev->broadcast, ax25_bcast, AX25_ADDR_LEN); memcpy(dev->dev_addr, ax25_test, AX25_ADDR_LEN); SET_MODULE_OWNER(dev); dev->flags = 0;}/* Send one completely decapsulated IP datagram to the IP layer. *//* * This is the routine that sends the received data to the kernel AX.25. * 'cmd' is the KISS command. For AX.25 data, it is zero. */static void sp_bump(struct sixpack *sp, char cmd){ struct sk_buff *skb; int count; unsigned char *ptr; count = sp->rcount + 1; sp->stats.rx_bytes += count; if ((skb = dev_alloc_skb(count)) == NULL) goto out_mem; ptr = skb_put(skb, count); *ptr++ = cmd; /* KISS command */ memcpy(ptr, sp->cooked_buf + 1, count); skb->protocol = ax25_type_trans(skb, sp->dev); netif_rx(skb); sp->dev->last_rx = jiffies; sp->stats.rx_packets++; return;out_mem: sp->stats.rx_dropped++;}/* ----------------------------------------------------------------------- *//* * We have a potential race on dereferencing tty->disc_data, because the tty * layer provides no locking at all - thus one cpu could be running * sixpack_receive_buf while another calls sixpack_close, which zeroes * tty->disc_data and frees the memory that sixpack_receive_buf is using. The * best way to fix this is to use a rwlock in the tty struct, but for now we * use a single global rwlock for all ttys in ppp line discipline. */static DEFINE_RWLOCK(disc_data_lock); static struct sixpack *sp_get(struct tty_struct *tty){ struct sixpack *sp; read_lock(&disc_data_lock); sp = tty->disc_data; if (sp) atomic_inc(&sp->refcnt); read_unlock(&disc_data_lock); return sp;}static void sp_put(struct sixpack *sp){ if (atomic_dec_and_test(&sp->refcnt)) up(&sp->dead_sem);}/* * Called by the TTY driver when there's room for more data. If we have * more packets to send, we send them here. */static void sixpack_write_wakeup(struct tty_struct *tty){ struct sixpack *sp = sp_get(tty); int actual; if (!sp) return; if (sp->xleft <= 0) { /* Now serial buffer is almost free & we can start * transmission of another packet */ sp->stats.tx_packets++; clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); sp->tx_enable = 0; netif_wake_queue(sp->dev); goto out; } if (sp->tx_enable) { actual = tty->driver->write(tty, sp->xhead, sp->xleft); sp->xleft -= actual; sp->xhead += actual; }out: sp_put(sp);}/* ----------------------------------------------------------------------- */static int sixpack_receive_room(struct tty_struct *tty){ return 65536; /* We can handle an infinite amount of data. :-) */}/* * Handle the 'receiver data ready' interrupt. * This function is called by the 'tty_io' module in the kernel when * a block of 6pack data has been received, which can now be decapsulated * and sent on to some IP layer for further processing. */static void sixpack_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count){ struct sixpack *sp; unsigned char buf[512]; int count1; if (!count) return; sp = sp_get(tty); if (!sp) return; memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf)); /* Read the characters out of the buffer */ count1 = count; while (count) { count--; if (fp && *fp++) { if (!test_and_set_bit(SIXPF_ERROR, &sp->flags)) sp->stats.rx_errors++; continue; } } sixpack_decode(sp, buf, count1); sp_put(sp); if (test_and_clear_bit(TTY_THROTTLED, &tty->flags) && tty->driver->unthrottle) tty->driver->unthrottle(tty);}/* * Try to resync the TNC. Called by the resync timer defined in * decode_prio_command */#define TNC_UNINITIALIZED 0#define TNC_UNSYNC_STARTUP 1#define TNC_UNSYNCED 2#define TNC_IN_SYNC 3static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state){ char *msg;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -