📄 ski2c.c
字号:
/****************************************************************************** * * Name: ski2c.c * Project: Gigabit Ethernet Adapters, TWSI-Module * Version: $Revision: 1.59 $ * Date: $Date: 2003/10/20 09:07:25 $ * Purpose: Functions to access Voltage and Temperature Sensor * ******************************************************************************//****************************************************************************** * * (C)Copyright 1998-2002 SysKonnect. * (C)Copyright 2002-2003 Marvell. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * The information in this file is provided "AS IS" without warranty. * ******************************************************************************//* * I2C Protocol */#if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM))))static const char SysKonnectFileId[] = "@(#) $Id: ski2c.c,v 1.59 2003/10/20 09:07:25 rschmidt Exp $ (C) Marvell. ";#endif#include "h/skdrv1st.h" /* Driver Specific Definitions */#include "h/lm80.h"#include "h/skdrv2nd.h" /* Adapter Control- and Driver specific Def. */#ifdef __C2MAN__/* I2C protocol implementation. General Description: The I2C protocol is used for the temperature sensors and for the serial EEPROM which hold the configuration. This file covers functions that allow to read write and do some bulk requests a specified I2C address. The Genesis has 2 I2C buses. One for the EEPROM which holds the VPD Data and one for temperature and voltage sensor. The following picture shows the I2C buses, I2C devices and their control registers. Note: The VPD functions are in skvpd.c.. PCI Config I2C Bus for VPD Data:.. +------------+. | VPD EEPROM |. +------------+. |. | <-- I2C. |. +-----------+-----------+. | |. +-----------------+ +-----------------+. | PCI_VPD_ADR_REG | | PCI_VPD_DAT_REG |. +-----------------+ +-----------------+... I2C Bus for LM80 sensor:.. +-----------------+. | Temperature and |. | Voltage Sensor |. | LM80 |. +-----------------+. |. |. I2C --> |. |. +----+. +-------------->| OR |<--+. | +----+ |. +------+------+ |. | | |. +--------+ +--------+ +----------+. | B2_I2C | | B2_I2C | | B2_I2C |. | _CTRL | | _DATA | | _SW |. +--------+ +--------+ +----------+. The I2C bus may be driven by the B2_I2C_SW or by the B2_I2C_CTRL and B2_I2C_DATA registers. For driver software it is recommended to use the I2C control and data register, because I2C bus timing is done by the ASIC and an interrupt may be received when the I2C request is completed. Clock Rate Timing: MIN MAX generated by VPD EEPROM: 50 kHz 100 kHz HW LM80 over I2C Ctrl/Data reg. 50 kHz 100 kHz HW LM80 over B2_I2C_SW register 0 400 kHz SW Note: The clock generated by the hardware is dependend on the PCI clock. If the PCI bus clock is 33 MHz, the I2C/VPD clock is 50 kHz. */intro(){}#endif#ifdef SK_DIAG/* * I2C Fast Mode timing values used by the LM80. * If new devices are added to the I2C bus the timing values have to be checked. */#ifndef I2C_SLOW_TIMING#define T_CLK_LOW 1300L /* clock low time in ns */#define T_CLK_HIGH 600L /* clock high time in ns */#define T_DATA_IN_SETUP 100L /* data in Set-up Time */#define T_START_HOLD 600L /* start condition hold time */#define T_START_SETUP 600L /* start condition Set-up time */#define T_STOP_SETUP 600L /* stop condition Set-up time */#define T_BUS_IDLE 1300L /* time the bus must free after Tx */#define T_CLK_2_DATA_OUT 900L /* max. clock low to data output valid */#else /* I2C_SLOW_TIMING *//* I2C Standard Mode Timing */#define T_CLK_LOW 4700L /* clock low time in ns */#define T_CLK_HIGH 4000L /* clock high time in ns */#define T_DATA_IN_SETUP 250L /* data in Set-up Time */#define T_START_HOLD 4000L /* start condition hold time */#define T_START_SETUP 4700L /* start condition Set-up time */#define T_STOP_SETUP 4000L /* stop condition Set-up time */#define T_BUS_IDLE 4700L /* time the bus must free after Tx */#endif /* !I2C_SLOW_TIMING */#define NS2BCLK(x) (((x)*125)/10000)/* * I2C Wire Operations * * About I2C_CLK_LOW(): * * The Data Direction bit (I2C_DATA_DIR) has to be set to input when setting * clock to low, to prevent the ASIC and the I2C data client from driving the * serial data line simultaneously (ASIC: last bit of a byte = '1', I2C client * send an 'ACK'). See also Concentrator Bugreport No. 10192. */#define I2C_DATA_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA)#define I2C_DATA_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA)#define I2C_DATA_OUT(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA_DIR)#define I2C_DATA_IN(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA)#define I2C_CLK_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_CLK)#define I2C_CLK_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK | I2C_DATA_DIR)#define I2C_START_COND(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK)#define NS2CLKT(x) ((x*125L)/10000)/*--------------- I2C Interface Register Functions --------------- *//* * sending one bit */void SkI2cSndBit(SK_IOC IoC, /* I/O Context */SK_U8 Bit) /* Bit to send */{ I2C_DATA_OUT(IoC); if (Bit) { I2C_DATA_HIGH(IoC); } else { I2C_DATA_LOW(IoC); } SkDgWaitTime(IoC, NS2BCLK(T_DATA_IN_SETUP)); I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); I2C_CLK_LOW(IoC);} /* SkI2cSndBit*//* * Signal a start to the I2C Bus. * * A start is signaled when data goes to low in a high clock cycle. * * Ends with Clock Low. * * Status: not tested */void SkI2cStart(SK_IOC IoC) /* I/O Context */{ /* Init data and Clock to output lines */ /* Set Data high */ I2C_DATA_OUT(IoC); I2C_DATA_HIGH(IoC); /* Set Clock high */ I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_START_SETUP)); /* Set Data Low */ I2C_DATA_LOW(IoC); SkDgWaitTime(IoC, NS2BCLK(T_START_HOLD)); /* Clock low without Data to Input */ I2C_START_COND(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW));} /* SkI2cStart */void SkI2cStop(SK_IOC IoC) /* I/O Context */{ /* Init data and Clock to output lines */ /* Set Data low */ I2C_DATA_OUT(IoC); I2C_DATA_LOW(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); /* Set Clock high */ I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_STOP_SETUP)); /* * Set Data High: Do it by setting the Data Line to Input. * Because of a pull up resistor the Data Line * floods to high. */ I2C_DATA_IN(IoC); /* * When I2C activity is stopped * o DATA should be set to input and * o CLOCK should be set to high! */ SkDgWaitTime(IoC, NS2BCLK(T_BUS_IDLE));} /* SkI2cStop *//* * Receive just one bit via the I2C bus. * * Note: Clock must be set to LOW before calling this function. * * Returns The received bit. */int SkI2cRcvBit(SK_IOC IoC) /* I/O Context */{ int Bit; SK_U8 I2cSwCtrl; /* Init data as input line */ I2C_DATA_IN(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); SK_I2C_GET_SW(IoC, &I2cSwCtrl); Bit = (I2cSwCtrl & I2C_DATA) ? 1 : 0; I2C_CLK_LOW(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW-T_CLK_2_DATA_OUT)); return(Bit);} /* SkI2cRcvBit *//* * Receive an ACK. * * returns 0 If acknowledged * 1 in case of an error */int SkI2cRcvAck(SK_IOC IoC) /* I/O Context */{ /* * Received bit must be zero. */ return(SkI2cRcvBit(IoC) != 0);} /* SkI2cRcvAck *//* * Send an NACK. */void SkI2cSndNAck(SK_IOC IoC) /* I/O Context */{ /* * Received bit must be zero. */ SkI2cSndBit(IoC, 1);} /* SkI2cSndNAck *//* * Send an ACK. */void SkI2cSndAck(SK_IOC IoC) /* I/O Context */{ /* * Received bit must be zero. */ SkI2cSndBit(IoC, 0);} /* SkI2cSndAck *//* * Send one byte to the I2C device and wait for ACK. * * Return acknowleged status. */int SkI2cSndByte(SK_IOC IoC, /* I/O Context */int Byte) /* byte to send */{ int i; for (i = 0; i < 8; i++) { if (Byte & (1<<(7-i))) { SkI2cSndBit(IoC, 1); } else { SkI2cSndBit(IoC, 0); } } return(SkI2cRcvAck(IoC));} /* SkI2cSndByte *//* * Receive one byte and ack it. * * Return byte. */int SkI2cRcvByte(SK_IOC IoC, /* I/O Context */int Last) /* Last Byte Flag */{ int i; int Byte = 0; for (i = 0; i < 8; i++) { Byte <<= 1; Byte |= SkI2cRcvBit(IoC); } if (Last) { SkI2cSndNAck(IoC); } else { SkI2cSndAck(IoC); } return(Byte);} /* SkI2cRcvByte *//* * Start dialog and send device address * * Return 0 if acknowleged, 1 in case of an error */int SkI2cSndDev(SK_IOC IoC, /* I/O Context */int Addr, /* Device Address */int Rw) /* Read / Write Flag */{ SkI2cStart(IoC); Rw = ~Rw; Rw &= I2C_WRITE; return(SkI2cSndByte(IoC, (Addr<<1) | Rw));} /* SkI2cSndDev */#endif /* SK_DIAG *//*----------------- I2C CTRL Register Functions ----------*//* * waits for a completion of an I2C transfer * * returns 0: success, transfer completes * 1: error, transfer does not complete, I2C transfer * killed, wait loop terminated. */int SkI2cWait(SK_AC *pAC, /* Adapter Context */SK_IOC IoC, /* I/O Context */int Event) /* complete event to wait for (I2C_READ or I2C_WRITE) */{ SK_U64 StartTime; SK_U64 CurrentTime; SK_U32 I2cCtrl; StartTime = SkOsGetTime(pAC); do { CurrentTime = SkOsGetTime(pAC); if (CurrentTime - StartTime > SK_TICKS_PER_SEC / 8) { SK_I2C_STOP(IoC);#ifndef SK_DIAG SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E002, SKERR_I2C_E002MSG);#endif /* !SK_DIAG */ return(1); } SK_I2C_GET_CTL(IoC, &I2cCtrl);#ifdef xYUKON_DBG printf("StartTime=%lu, CurrentTime=%lu\n", StartTime, CurrentTime); if (kbhit()) { return(1); }#endif /* YUKON_DBG */ } while ((I2cCtrl & I2C_FLAG) == (SK_U32)Event << 31);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -