📄 fplustm.c
字号:
* called by CFM */void config_mux(struct s_smc *smc, int mux){ plc_config_mux(smc,mux) ; SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ;}/* * called by RMT * enable CLAIM/BEACON interrupts * (only called if these events are of interest, e.g. in DETECT state * the interrupt must not be permanently enabled * RMT calls this function periodically (timer driven polling) */void sm_mac_check_beacon_claim(struct s_smc *smc){ /* set formac IMSK : 0 enables irq */ outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ; /* the driver must receive the directed beacons */ formac_rcv_restart(smc) ; process_receive(smc) ;}/*-------------------------- interface functions ----------------------------*//* * control MAC layer (called by RMT) */void sm_ma_control(struct s_smc *smc, int mode){ switch(mode) { case MA_OFFLINE : /* Add to make the MAC offline in RM0_ISOLATED state */ formac_offline(smc) ; break ; case MA_RESET : (void)init_mac(smc,0) ; break ; case MA_BEACON : formac_online(smc) ; break ; case MA_DIRECTED : directed_beacon(smc) ; break ; case MA_TREQ : /* * no actions necessary, TREQ is already set */ break ; }}int sm_mac_get_tx_state(struct s_smc *smc){ return((inpw(FM_A(FM_STMCHN))>>4)&7) ;}/* * multicast functions */static struct s_fpmc* mac_get_mc_table(struct s_smc *smc, struct fddi_addr *user, struct fddi_addr *own, int del, int can){ struct s_fpmc *tb ; struct s_fpmc *slot ; u_char *p ; int i ; /* * set own = can(user) */ *own = *user ; if (can) { p = own->a ; for (i = 0 ; i < 6 ; i++, p++) *p = canonical[*p] ; } slot = NULL; for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ if (!tb->n) { /* not used */ if (!del && !slot) /* if !del save first free */ slot = tb ; continue ; } if (memcmp((char *)&tb->a,(char *)own,6)) continue ; return(tb) ; } return(slot) ; /* return first free or NULL */}/* BEGIN_MANUAL_ENTRY(if,func;others;2) void mac_clear_multicast(smc) struct s_smc *smc ;Function DOWNCALL (SMT, fplustm.c) Clear all multicast entries END_MANUAL_ENTRY() */void mac_clear_multicast(struct s_smc *smc){ struct s_fpmc *tb ; int i ; smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */ /* will not be deleted */ for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){ if (!tb->perm) { tb->n = 0 ; } }}/* BEGIN_MANUAL_ENTRY(if,func;others;2) int mac_add_multicast(smc,addr,can) struct s_smc *smc ; struct fddi_addr *addr ; int can ;Function DOWNCALL (SMC, fplustm.c) Add an entry to the multicast tablePara addr pointer to a multicast address can = 0: the multicast address has the physical format = 1: the multicast address has the canonical format | 0x80 permanentReturns 0: success 1: address table fullNote After a 'driver reset' or a 'station set address' all entries of the multicast table are cleared. In this case the driver has to fill the multicast table again. After the operating system dependent module filled the multicast table it must call mac_update_multicast to activate the new multicast addresses! END_MANUAL_ENTRY() */int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can){ SK_LOC_DECL(struct fddi_addr,own) ; struct s_fpmc *tb ; /* * check if there are free table entries */ if (can & 0x80) { if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) { return(1) ; } } else { if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) { return(1) ; } } /* * find empty slot */ if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80))) return(1) ; tb->n++ ; tb->a = own ; tb->perm = (can & 0x80) ? 1 : 0 ; if (can & 0x80) smc->hw.fp.smt_slots_used++ ; else smc->hw.fp.os_slots_used++ ; return(0) ;}/* * mode */#define RX_MODE_PROM 0x1#define RX_MODE_ALL_MULTI 0x2/* BEGIN_MANUAL_ENTRY(if,func;others;2) void mac_update_multicast(smc) struct s_smc *smc ;Function DOWNCALL (SMT, fplustm.c) Update FORMAC multicast registers END_MANUAL_ENTRY() */void mac_update_multicast(struct s_smc *smc){ struct s_fpmc *tb ; u_char *fu ; int i ; /* * invalidate the CAM */ outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ; /* * set the functional address */ if (smc->hw.fp.func_addr) { fu = (u_char *) &smc->hw.fp.func_addr ; outpw(FM_A(FM_AFMASK2),0xffff) ; outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ; outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ; outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; outpw(FM_A(FM_AFCOMP2), 0xc000) ; outpw(FM_A(FM_AFCOMP1), 0x0000) ; outpw(FM_A(FM_AFCOMP0), 0x0000) ; outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; } /* * set the mask and the personality register(s) */ outpw(FM_A(FM_AFMASK0),0xffff) ; outpw(FM_A(FM_AFMASK1),0xffff) ; outpw(FM_A(FM_AFMASK2),0xffff) ; outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ; for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) { if (tb->n) { CHECK_CAM() ; /* * write the multicast address into the CAM */ outpw(FM_A(FM_AFCOMP2), (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ; outpw(FM_A(FM_AFCOMP1), (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ; outpw(FM_A(FM_AFCOMP0), (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ; outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ; } }}/* BEGIN_MANUAL_ENTRY(if,func;others;3) void mac_set_rx_mode(smc,mode) struct s_smc *smc ; int mode ;Function DOWNCALL/INTERN (SMT, fplustm.c) This function enables / disables the selected receive. Don't call this function if the hardware module is used -- use mac_drv_rx_mode() instead of.Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts 2 RX_DISABLE_ALLMULTI disable "enable all multicasts" 3 RX_ENABLE_PROMISC enable promiscous 4 RX_DISABLE_PROMISC disable promiscous 5 RX_ENABLE_NSA enable reception of NSA frames 6 RX_DISABLE_NSA disable reception of NSA framesNote The selected receive modes will be lost after 'driver reset' or 'set station address' END_MANUAL_ENTRY */void mac_set_rx_mode(struct s_smc *smc, int mode){ switch (mode) { case RX_ENABLE_ALLMULTI : smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ; break ; case RX_DISABLE_ALLMULTI : smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ; break ; case RX_ENABLE_PROMISC : smc->hw.fp.rx_prom |= RX_MODE_PROM ; break ; case RX_DISABLE_PROMISC : smc->hw.fp.rx_prom &= ~RX_MODE_PROM ; break ; case RX_ENABLE_NSA : smc->hw.fp.nsa_mode = FM_MDAMA ; smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | smc->hw.fp.nsa_mode ; break ; case RX_DISABLE_NSA : smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ; smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) | smc->hw.fp.nsa_mode ; break ; } if (smc->hw.fp.rx_prom & RX_MODE_PROM) { smc->hw.fp.rx_mode = FM_MLIMPROM ; } else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) { smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ; } else smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ; SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ; mac_update_multicast(smc) ;}/* BEGIN_MANUAL_ENTRY(module;tests;3) How to test the Restricted Token Monitor ---------------------------------------------------------------- o Insert a break point in the function rtm_irq() o Remove all stations with a restricted token monitor from the network. o Connect a UPPS ISA or EISA station to the network. o Give the FORMAC of UPPS station the command to send restricted tokens until the ring becomes instable. o Now connect your test test client. o The restricted token monitor should detect the restricted token, and your break point will be reached. o You can ovserve how the station will clean the ring. END_MANUAL_ENTRY */void rtm_irq(struct s_smc *smc){ outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */ if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) { outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */ DB_RMT("RMT: fddiPATHT_Rmode expired\n",0,0) ; AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long) FDDI_SMT_EVENT, (u_long) FDDI_RTT, smt_get_event_word(smc)); } outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */}static void rtm_init(struct s_smc *smc){ outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */ outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */}void rtm_set_timer(struct s_smc *smc){ /* * MIB timer and hardware timer have the same resolution of 80nS */ DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns \n", (int) smc->mib.a[PATH0].fddiPATHT_Rmode,0) ; outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ;}static void smt_split_up_fifo(struct s_smc *smc){/* BEGIN_MANUAL_ENTRY(module;mem;1) ------------------------------------------------------------- RECEIVE BUFFER MEMORY DIVERSION ------------------------------------------------------------- R1_RxD == SMT_R1_RXD_COUNT R2_RxD == SMT_R2_RXD_COUNT SMT_R1_RXD_COUNT must be unequal zero | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD | x 0 | x 1-3 | x < 3 ---------------------------------------------------------------------- | 63,75 kB | 54,75 | R1_RxD rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB | | | R1_RxD+R2_RxD ---------------------------------------------------------------------- | | 9 kB | R2_RxD rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB | (not used) | | R1_RxD+R2_RxD END_MANUAL_ENTRY*/ if (SMT_R1_RXD_COUNT == 0) { SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ; } switch(SMT_R2_RXD_COUNT) { case 0: smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ; smc->hw.fp.fifo.rx2_fifo_size = 0 ; break ; case 1: case 2: case 3: smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ; smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ; break ; default: /* this is not the real defaule */ smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE * SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE * SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ; break ; }/* BEGIN_MANUAL_ENTRY(module;mem;1) ------------------------------------------------------------- TRANSMIT BUFFER MEMORY DIVERSION ------------------------------------------------------------- | no sync bw | sync bw available and | sync bw available and | available | SynchTxMode = SPLIT | SynchTxMode = ALL ----------------------------------------------------------------------- sync tx | 0 kB | 32 kB | 55 kB queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO ----------------------------------------------------------------------- async tx | 64 kB | 32 kB | 9 k queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO END_MANUAL_ENTRY*/ /* * set the tx mode bits */ if (smc->mib.a[PATH0].fddiPATHSbaPayload) {#ifdef ESS smc->hw.fp.fifo.fifo_config_mode |= smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ;#endif } else { smc->hw.fp.fifo.fifo_config_mode &= ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ; } /* * split up the FIFO */ if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) { if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) { smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ; smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ; } else { smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ; smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ; } } else { smc->hw.fp.fifo.tx_s_size = 0 ; smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ; } smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start + RX_FIFO_OFF ; smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start + smc->hw.fp.fifo.rx1_fifo_size ; smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start + smc->hw.fp.fifo.tx_s_size ; smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start + smc->hw.fp.fifo.tx_a0_size ; DB_SMT("FIFO split: mode = %x\n",smc->hw.fp.fifo.fifo_config_mode,0) ; DB_SMT("rbc_ram_start = %x rbc_ram_end = %x\n", smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end) ; DB_SMT("rx1_fifo_start = %x tx_s_start = %x\n", smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start) ; DB_SMT("tx_a0_start = %x rx2_fifo_start = %x\n", smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start) ;}void formac_reinit_tx(struct s_smc *smc){ /* * Split up the FIFO and reinitialize the MAC if synchronous * bandwidth becomes available but no synchronous queue is * configured. */ if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){ (void)init_mac(smc,0) ; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -