📄 psparse.c
字号:
acpi_statusacpi_ps_next_parse_state(struct acpi_walk_state *walk_state, union acpi_parse_object *op, acpi_status callback_status){ struct acpi_parse_state *parser_state = &walk_state->parser_state; acpi_status status = AE_CTRL_PENDING; ACPI_FUNCTION_TRACE_PTR("ps_next_parse_state", op); switch (callback_status) { case AE_CTRL_TERMINATE: /* * A control method was terminated via a RETURN statement. * The walk of this method is complete. */ parser_state->aml = parser_state->aml_end; status = AE_CTRL_TERMINATE; break; case AE_CTRL_BREAK: parser_state->aml = walk_state->aml_last_while; walk_state->control_state->common.value = FALSE; status = AE_CTRL_BREAK; break; case AE_CTRL_CONTINUE: parser_state->aml = walk_state->aml_last_while; status = AE_CTRL_CONTINUE; break; case AE_CTRL_PENDING: parser_state->aml = walk_state->aml_last_while; break;#if 0 case AE_CTRL_SKIP: parser_state->aml = parser_state->scope->parse_scope.pkg_end; status = AE_OK; break;#endif case AE_CTRL_TRUE: /* * Predicate of an IF was true, and we are at the matching ELSE. * Just close out this package */ parser_state->aml = acpi_ps_get_next_package_end(parser_state); break; case AE_CTRL_FALSE: /* * Either an IF/WHILE Predicate was false or we encountered a BREAK * opcode. In both cases, we do not execute the rest of the * package; We simply close out the parent (finishing the walk of * this branch of the tree) and continue execution at the parent * level. */ parser_state->aml = parser_state->scope->parse_scope.pkg_end; /* In the case of a BREAK, just force a predicate (if any) to FALSE */ walk_state->control_state->common.value = FALSE; status = AE_CTRL_END; break; case AE_CTRL_TRANSFER: /* A method call (invocation) -- transfer control */ status = AE_CTRL_TRANSFER; walk_state->prev_op = op; walk_state->method_call_op = op; walk_state->method_call_node = (op->common.value.arg)->common.node; /* Will return value (if any) be used by the caller? */ walk_state->return_used = acpi_ds_is_result_used(op, walk_state); break; default: status = callback_status; if ((callback_status & AE_CODE_MASK) == AE_CODE_CONTROL) { status = AE_OK; } break; } return_ACPI_STATUS(status);}/******************************************************************************* * * FUNCTION: acpi_ps_parse_aml * * PARAMETERS: walk_state - Current state * * * RETURN: Status * * DESCRIPTION: Parse raw AML and return a tree of ops * ******************************************************************************/acpi_status acpi_ps_parse_aml(struct acpi_walk_state *walk_state){ acpi_status status; struct acpi_thread_state *thread; struct acpi_thread_state *prev_walk_list = acpi_gbl_current_walk_list; struct acpi_walk_state *previous_walk_state; ACPI_FUNCTION_TRACE("ps_parse_aml"); ACPI_DEBUG_PRINT((ACPI_DB_PARSE, "Entered with walk_state=%p Aml=%p size=%X\n", walk_state, walk_state->parser_state.aml, walk_state->parser_state.aml_size)); /* Create and initialize a new thread state */ thread = acpi_ut_create_thread_state(); if (!thread) { return_ACPI_STATUS(AE_NO_MEMORY); } walk_state->thread = thread; acpi_ds_push_walk_state(walk_state, thread); /* * This global allows the AML debugger to get a handle to the currently * executing control method. */ acpi_gbl_current_walk_list = thread; /* * Execute the walk loop as long as there is a valid Walk State. This * handles nested control method invocations without recursion. */ ACPI_DEBUG_PRINT((ACPI_DB_PARSE, "State=%p\n", walk_state)); status = AE_OK; while (walk_state) { if (ACPI_SUCCESS(status)) { /* * The parse_loop executes AML until the method terminates * or calls another method. */ status = acpi_ps_parse_loop(walk_state); } ACPI_DEBUG_PRINT((ACPI_DB_PARSE, "Completed one call to walk loop, %s State=%p\n", acpi_format_exception(status), walk_state)); if (status == AE_CTRL_TRANSFER) { /* * A method call was detected. * Transfer control to the called control method */ status = acpi_ds_call_control_method(thread, walk_state, NULL); /* * If the transfer to the new method method call worked, a new walk * state was created -- get it */ walk_state = acpi_ds_get_current_walk_state(thread); continue; } else if (status == AE_CTRL_TERMINATE) { status = AE_OK; } else if ((status != AE_OK) && (walk_state->method_desc)) { ACPI_REPORT_METHOD_ERROR("Method execution failed", walk_state->method_node, NULL, status); /* Ensure proper cleanup */ walk_state->parse_flags |= ACPI_PARSE_EXECUTE; /* Check for possible multi-thread reentrancy problem */ if ((status == AE_ALREADY_EXISTS) && (!walk_state->method_desc->method.semaphore)) { /* * This method is marked not_serialized, but it tried to create * a named object, causing the second thread entrance to fail. * We will workaround this by marking the method permanently * as Serialized. */ walk_state->method_desc->method.method_flags |= AML_METHOD_SERIALIZED; walk_state->method_desc->method.concurrency = 1; } } /* We are done with this walk, move on to the parent if any */ walk_state = acpi_ds_pop_walk_state(thread); /* Reset the current scope to the beginning of scope stack */ acpi_ds_scope_stack_clear(walk_state); /* * If we just returned from the execution of a control method, * there's lots of cleanup to do */ if ((walk_state->parse_flags & ACPI_PARSE_MODE_MASK) == ACPI_PARSE_EXECUTE) { if (walk_state->method_desc) { /* Decrement the thread count on the method parse tree */ walk_state->method_desc->method.thread_count--; } acpi_ds_terminate_control_method(walk_state); } /* Delete this walk state and all linked control states */ acpi_ps_cleanup_scope(&walk_state->parser_state); previous_walk_state = walk_state; ACPI_DEBUG_PRINT((ACPI_DB_PARSE, "return_value=%p, implicit_value=%p State=%p\n", walk_state->return_desc, walk_state->implicit_return_obj, walk_state)); /* Check if we have restarted a preempted walk */ walk_state = acpi_ds_get_current_walk_state(thread); if (walk_state) { if (ACPI_SUCCESS(status)) { /* * There is another walk state, restart it. * If the method return value is not used by the parent, * The object is deleted */ if (!previous_walk_state->return_desc) { status = acpi_ds_restart_control_method (walk_state, previous_walk_state-> implicit_return_obj); } else { /* * We have a valid return value, delete any implicit * return value. */ acpi_ds_clear_implicit_return (previous_walk_state); status = acpi_ds_restart_control_method (walk_state, previous_walk_state->return_desc); } if (ACPI_SUCCESS(status)) { walk_state->walk_type |= ACPI_WALK_METHOD_RESTART; } } else { /* On error, delete any return object */ acpi_ut_remove_reference(previous_walk_state-> return_desc); } } /* * Just completed a 1st-level method, save the final internal return * value (if any) */ else if (previous_walk_state->caller_return_desc) { if (previous_walk_state->implicit_return_obj) { *(previous_walk_state->caller_return_desc) = previous_walk_state->implicit_return_obj; } else { /* NULL if no return value */ *(previous_walk_state->caller_return_desc) = previous_walk_state->return_desc; } } else { if (previous_walk_state->return_desc) { /* Caller doesn't want it, must delete it */ acpi_ut_remove_reference(previous_walk_state-> return_desc); } if (previous_walk_state->implicit_return_obj) { /* Caller doesn't want it, must delete it */ acpi_ut_remove_reference(previous_walk_state-> implicit_return_obj); } } acpi_ds_delete_walk_state(previous_walk_state); } /* Normal exit */ acpi_ex_release_all_mutexes(thread); acpi_ut_delete_generic_state(ACPI_CAST_PTR (union acpi_generic_state, thread)); acpi_gbl_current_walk_list = prev_walk_list; return_ACPI_STATUS(status);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -