⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 utmath.c

📁 linux-2.6.15.6
💻 C
字号:
/******************************************************************************* * * Module Name: utmath - Integer math support routines * ******************************************************************************//* * Copyright (C) 2000 - 2005, R. Byron Moore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions, and the following disclaimer, *    without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer *    substantially similar to the "NO WARRANTY" disclaimer below *    ("Disclaimer") and any redistribution must be conditioned upon *    including a substantially similar Disclaimer requirement for further *    binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names *    of any contributors may be used to endorse or promote products derived *    from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */#include <acpi/acpi.h>#define _COMPONENT          ACPI_UTILITIESACPI_MODULE_NAME("utmath")/* * Support for double-precision integer divide.  This code is included here * in order to support kernel environments where the double-precision math * library is not available. */#ifndef ACPI_USE_NATIVE_DIVIDE/******************************************************************************* * * FUNCTION:    acpi_ut_short_divide * * PARAMETERS:  Dividend            - 64-bit dividend *              Divisor             - 32-bit divisor *              out_quotient        - Pointer to where the quotient is returned *              out_remainder       - Pointer to where the remainder is returned * * RETURN:      Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits) *              divide and modulo.  The result is a 64-bit quotient and a *              32-bit remainder. * ******************************************************************************/acpi_statusacpi_ut_short_divide(acpi_integer dividend,		     u32 divisor,		     acpi_integer * out_quotient, u32 * out_remainder){	union uint64_overlay dividend_ovl;	union uint64_overlay quotient;	u32 remainder32;	ACPI_FUNCTION_TRACE("ut_short_divide");	/* Always check for a zero divisor */	if (divisor == 0) {		ACPI_REPORT_ERROR(("acpi_ut_short_divide: Divide by zero\n"));		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);	}	dividend_ovl.full = dividend;	/*	 * The quotient is 64 bits, the remainder is always 32 bits,	 * and is generated by the second divide.	 */	ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,			  quotient.part.hi, remainder32);	ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,			  quotient.part.lo, remainder32);	/* Return only what was requested */	if (out_quotient) {		*out_quotient = quotient.full;	}	if (out_remainder) {		*out_remainder = remainder32;	}	return_ACPI_STATUS(AE_OK);}/******************************************************************************* * * FUNCTION:    acpi_ut_divide * * PARAMETERS:  in_dividend         - Dividend *              in_divisor          - Divisor *              out_quotient        - Pointer to where the quotient is returned *              out_remainder       - Pointer to where the remainder is returned * * RETURN:      Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a divide and modulo. * ******************************************************************************/acpi_statusacpi_ut_divide(acpi_integer in_dividend,	       acpi_integer in_divisor,	       acpi_integer * out_quotient, acpi_integer * out_remainder){	union uint64_overlay dividend;	union uint64_overlay divisor;	union uint64_overlay quotient;	union uint64_overlay remainder;	union uint64_overlay normalized_dividend;	union uint64_overlay normalized_divisor;	u32 partial1;	union uint64_overlay partial2;	union uint64_overlay partial3;	ACPI_FUNCTION_TRACE("ut_divide");	/* Always check for a zero divisor */	if (in_divisor == 0) {		ACPI_REPORT_ERROR(("acpi_ut_divide: Divide by zero\n"));		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);	}	divisor.full = in_divisor;	dividend.full = in_dividend;	if (divisor.part.hi == 0) {		/*		 * 1) Simplest case is where the divisor is 32 bits, we can		 * just do two divides		 */		remainder.part.hi = 0;		/*		 * The quotient is 64 bits, the remainder is always 32 bits,		 * and is generated by the second divide.		 */		ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,				  quotient.part.hi, partial1);		ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,				  quotient.part.lo, remainder.part.lo);	}	else {		/*		 * 2) The general case where the divisor is a full 64 bits		 * is more difficult		 */		quotient.part.hi = 0;		normalized_dividend = dividend;		normalized_divisor = divisor;		/* Normalize the operands (shift until the divisor is < 32 bits) */		do {			ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,					    normalized_divisor.part.lo);			ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,					    normalized_dividend.part.lo);		} while (normalized_divisor.part.hi != 0);		/* Partial divide */		ACPI_DIV_64_BY_32(normalized_dividend.part.hi,				  normalized_dividend.part.lo,				  normalized_divisor.part.lo,				  quotient.part.lo, partial1);		/*		 * The quotient is always 32 bits, and simply requires adjustment.		 * The 64-bit remainder must be generated.		 */		partial1 = quotient.part.lo * divisor.part.hi;		partial2.full =		    (acpi_integer) quotient.part.lo * divisor.part.lo;		partial3.full = (acpi_integer) partial2.part.hi + partial1;		remainder.part.hi = partial3.part.lo;		remainder.part.lo = partial2.part.lo;		if (partial3.part.hi == 0) {			if (partial3.part.lo >= dividend.part.hi) {				if (partial3.part.lo == dividend.part.hi) {					if (partial2.part.lo > dividend.part.lo) {						quotient.part.lo--;						remainder.full -= divisor.full;					}				} else {					quotient.part.lo--;					remainder.full -= divisor.full;				}			}			remainder.full = remainder.full - dividend.full;			remainder.part.hi = (u32) - ((s32) remainder.part.hi);			remainder.part.lo = (u32) - ((s32) remainder.part.lo);			if (remainder.part.lo) {				remainder.part.hi--;			}		}	}	/* Return only what was requested */	if (out_quotient) {		*out_quotient = quotient.full;	}	if (out_remainder) {		*out_remainder = remainder.full;	}	return_ACPI_STATUS(AE_OK);}#else/******************************************************************************* * * FUNCTION:    acpi_ut_short_divide, acpi_ut_divide * * PARAMETERS:  See function headers above * * DESCRIPTION: Native versions of the ut_divide functions. Use these if either *              1) The target is a 64-bit platform and therefore 64-bit *                 integer math is supported directly by the machine. *              2) The target is a 32-bit or 16-bit platform, and the *                 double-precision integer math library is available to *                 perform the divide. * ******************************************************************************/acpi_statusacpi_ut_short_divide(acpi_integer in_dividend,		     u32 divisor,		     acpi_integer * out_quotient, u32 * out_remainder){	ACPI_FUNCTION_TRACE("ut_short_divide");	/* Always check for a zero divisor */	if (divisor == 0) {		ACPI_REPORT_ERROR(("acpi_ut_short_divide: Divide by zero\n"));		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);	}	/* Return only what was requested */	if (out_quotient) {		*out_quotient = in_dividend / divisor;	}	if (out_remainder) {		*out_remainder = (u32) in_dividend % divisor;	}	return_ACPI_STATUS(AE_OK);}acpi_statusacpi_ut_divide(acpi_integer in_dividend,	       acpi_integer in_divisor,	       acpi_integer * out_quotient, acpi_integer * out_remainder){	ACPI_FUNCTION_TRACE("ut_divide");	/* Always check for a zero divisor */	if (in_divisor == 0) {		ACPI_REPORT_ERROR(("acpi_ut_divide: Divide by zero\n"));		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);	}	/* Return only what was requested */	if (out_quotient) {		*out_quotient = in_dividend / in_divisor;	}	if (out_remainder) {		*out_remainder = in_dividend % in_divisor;	}	return_ACPI_STATUS(AE_OK);}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -