📄 ftape-ecc.c
字号:
/* * * Copyright (c) 1993 Ning and David Mosberger. This is based on code originally written by Bas Laarhoven (bas@vimec.nl) and David L. Brown, Jr., and incorporates improvements suggested by Kai Harrekilde-Petersen. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/ftape-ecc.c,v $ * $Revision: 1.3 $ * $Date: 1997/10/05 19:18:10 $ * * This file contains the Reed-Solomon error correction code * for the QIC-40/80 floppy-tape driver for Linux. */#include <linux/ftape.h>#include "../lowlevel/ftape-tracing.h"#include "../lowlevel/ftape-ecc.h"/* Machines that are big-endian should define macro BIG_ENDIAN. * Unfortunately, there doesn't appear to be a standard include file * that works for all OSs. */#if defined(__sparc__) || defined(__hppa)#define BIG_ENDIAN#endif /* __sparc__ || __hppa */#if defined(__mips__)#error Find a smart way to determine the Endianness of the MIPS CPU#endif/* Notice: to minimize the potential for confusion, we use r to * denote the independent variable of the polynomials in the * Galois Field GF(2^8). We reserve x for polynomials that * that have coefficients in GF(2^8). * * The Galois Field in which coefficient arithmetic is performed are * the polynomials over Z_2 (i.e., 0 and 1) modulo the irreducible * polynomial f(r), where f(r)=r^8 + r^7 + r^2 + r + 1. A polynomial * is represented as a byte with the MSB as the coefficient of r^7 and * the LSB as the coefficient of r^0. For example, the binary * representation of f(x) is 0x187 (of course, this doesn't fit into 8 * bits). In this field, the polynomial r is a primitive element. * That is, r^i with i in 0,...,255 enumerates all elements in the * field. * * The generator polynomial for the QIC-80 ECC is * * g(x) = x^3 + r^105*x^2 + r^105*x + 1 * * which can be factored into: * * g(x) = (x-r^-1)(x-r^0)(x-r^1) * * the byte representation of the coefficients are: * * r^105 = 0xc0 * r^-1 = 0xc3 * r^0 = 0x01 * r^1 = 0x02 * * Notice that r^-1 = r^254 as exponent arithmetic is performed * modulo 2^8-1 = 255. * * For more information on Galois Fields and Reed-Solomon codes, refer * to any good book. I found _An Introduction to Error Correcting * Codes with Applications_ by S. A. Vanstone and P. C. van Oorschot * to be a good introduction into the former. _CODING THEORY: The * Essentials_ I found very useful for its concise description of * Reed-Solomon encoding/decoding. * */typedef __u8 Matrix[3][3];/* * gfpow[] is defined such that gfpow[i] returns r^i if * i is in the range [0..255]. */static const __u8 gfpow[] ={ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4, 0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb, 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd, 0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31, 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67, 0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc, 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b, 0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4, 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26, 0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21, 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba, 0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, 0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3, 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9, 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44, 0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef, 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85, 0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6, 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf, 0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff, 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58, 0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24, 0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8, 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64, 0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2, 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda, 0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77, 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01};/* * This is a log table. That is, gflog[r^i] returns i (modulo f(r)). * gflog[0] is undefined and the first element is therefore not valid. */static const __u8 gflog[256] ={ 0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a, 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a, 0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1, 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3, 0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83, 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4, 0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35, 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38, 0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70, 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48, 0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24, 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15, 0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f, 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10, 0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7, 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b, 0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08, 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a, 0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91, 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb, 0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2, 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf, 0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52, 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86, 0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc, 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc, 0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8, 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44, 0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1, 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97, 0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5, 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7};/* This is a multiplication table for the factor 0xc0 (i.e., r^105 (mod f(r)). * gfmul_c0[f] returns r^105 * f(r) (modulo f(r)). */static const __u8 gfmul_c0[256] ={ 0x00, 0xc0, 0x07, 0xc7, 0x0e, 0xce, 0x09, 0xc9, 0x1c, 0xdc, 0x1b, 0xdb, 0x12, 0xd2, 0x15, 0xd5, 0x38, 0xf8, 0x3f, 0xff, 0x36, 0xf6, 0x31, 0xf1, 0x24, 0xe4, 0x23, 0xe3, 0x2a, 0xea, 0x2d, 0xed, 0x70, 0xb0, 0x77, 0xb7, 0x7e, 0xbe, 0x79, 0xb9, 0x6c, 0xac, 0x6b, 0xab, 0x62, 0xa2, 0x65, 0xa5, 0x48, 0x88, 0x4f, 0x8f, 0x46, 0x86, 0x41, 0x81, 0x54, 0x94, 0x53, 0x93, 0x5a, 0x9a, 0x5d, 0x9d, 0xe0, 0x20, 0xe7, 0x27, 0xee, 0x2e, 0xe9, 0x29, 0xfc, 0x3c, 0xfb, 0x3b, 0xf2, 0x32, 0xf5, 0x35, 0xd8, 0x18, 0xdf, 0x1f, 0xd6, 0x16, 0xd1, 0x11, 0xc4, 0x04, 0xc3, 0x03, 0xca, 0x0a, 0xcd, 0x0d, 0x90, 0x50, 0x97, 0x57, 0x9e, 0x5e, 0x99, 0x59, 0x8c, 0x4c, 0x8b, 0x4b, 0x82, 0x42, 0x85, 0x45, 0xa8, 0x68, 0xaf, 0x6f, 0xa6, 0x66, 0xa1, 0x61, 0xb4, 0x74, 0xb3, 0x73, 0xba, 0x7a, 0xbd, 0x7d, 0x47, 0x87, 0x40, 0x80, 0x49, 0x89, 0x4e, 0x8e, 0x5b, 0x9b, 0x5c, 0x9c, 0x55, 0x95, 0x52, 0x92, 0x7f, 0xbf, 0x78, 0xb8, 0x71, 0xb1, 0x76, 0xb6, 0x63, 0xa3, 0x64, 0xa4, 0x6d, 0xad, 0x6a, 0xaa, 0x37, 0xf7, 0x30, 0xf0, 0x39, 0xf9, 0x3e, 0xfe, 0x2b, 0xeb, 0x2c, 0xec, 0x25, 0xe5, 0x22, 0xe2, 0x0f, 0xcf, 0x08, 0xc8, 0x01, 0xc1, 0x06, 0xc6, 0x13, 0xd3, 0x14, 0xd4, 0x1d, 0xdd, 0x1a, 0xda, 0xa7, 0x67, 0xa0, 0x60, 0xa9, 0x69, 0xae, 0x6e, 0xbb, 0x7b, 0xbc, 0x7c, 0xb5, 0x75, 0xb2, 0x72, 0x9f, 0x5f, 0x98, 0x58, 0x91, 0x51, 0x96, 0x56, 0x83, 0x43, 0x84, 0x44, 0x8d, 0x4d, 0x8a, 0x4a, 0xd7, 0x17, 0xd0, 0x10, 0xd9, 0x19, 0xde, 0x1e, 0xcb, 0x0b, 0xcc, 0x0c, 0xc5, 0x05, 0xc2, 0x02, 0xef, 0x2f, 0xe8, 0x28, 0xe1, 0x21, 0xe6, 0x26, 0xf3, 0x33, 0xf4, 0x34, 0xfd, 0x3d, 0xfa, 0x3a};/* Returns V modulo 255 provided V is in the range -255,-254,...,509. */static inline __u8 mod255(int v){ if (v > 0) { if (v < 255) { return v; } else { return v - 255; } } else { return v + 255; }}/* Add two numbers in the field. Addition in this field is equivalent * to a bit-wise exclusive OR operation---subtraction is therefore * identical to addition. */static inline __u8 gfadd(__u8 a, __u8 b){ return a ^ b;}/* Add two vectors of numbers in the field. Each byte in A and B gets * added individually. */static inline unsigned long gfadd_long(unsigned long a, unsigned long b){ return a ^ b;}/* Multiply two numbers in the field: */static inline __u8 gfmul(__u8 a, __u8 b){ if (a && b) { return gfpow[mod255(gflog[a] + gflog[b])]; } else { return 0; }}/* Just like gfmul, except we have already looked up the log of the * second number. */static inline __u8 gfmul_exp(__u8 a, int b){ if (a) { return gfpow[mod255(gflog[a] + b)]; } else { return 0; }}/* Just like gfmul_exp, except that A is a vector of numbers. That * is, each byte in A gets multiplied by gfpow[mod255(B)]. */static inline unsigned long gfmul_exp_long(unsigned long a, int b){ __u8 t; if (sizeof(long) == 4) { return ( ((t = (__u32)a >> 24 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 24) : 0) | ((t = (__u32)a >> 16 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 16) : 0) | ((t = (__u32)a >> 8 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 8) : 0) | ((t = (__u32)a >> 0 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 0) : 0)); } else if (sizeof(long) == 8) { return ( ((t = (__u64)a >> 56 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 56) : 0) | ((t = (__u64)a >> 48 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 48) : 0) | ((t = (__u64)a >> 40 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 40) : 0) | ((t = (__u64)a >> 32 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 32) : 0) | ((t = (__u64)a >> 24 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 24) : 0) | ((t = (__u64)a >> 16 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 16) : 0) | ((t = (__u64)a >> 8 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 8) : 0) | ((t = (__u64)a >> 0 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 0) : 0)); } else { TRACE_FUN(ft_t_any); TRACE_ABORT(-1, ft_t_err, "Error: size of long is %d bytes", (int)sizeof(long)); }}/* Divide two numbers in the field. Returns a/b (modulo f(x)). */static inline __u8 gfdiv(__u8 a, __u8 b){ if (!b) { TRACE_FUN(ft_t_any); TRACE_ABORT(0xff, ft_t_bug, "Error: division by zero"); } else if (a == 0) { return 0; } else { return gfpow[mod255(gflog[a] - gflog[b])]; }}/* The following functions return the inverse of the matrix of the * linear system that needs to be solved to determine the error * magnitudes. The first deals with matrices of rank 3, while the * second deals with matrices of rank 2. The error indices are passed * in arguments L0,..,L2 (0=first sector, 31=last sector). The error * indices must be sorted in ascending order, i.e., L0<L1<L2. * * The linear system that needs to be solved for the error magnitudes * is A * b = s, where s is the known vector of syndromes, b is the * vector of error magnitudes and A in the ORDER=3 case: * * A_3 = {{1/r^L[0], 1/r^L[1], 1/r^L[2]}, * { 1, 1, 1}, * { r^L[0], r^L[1], r^L[2]}} */static inline int gfinv3(__u8 l0, __u8 l1, __u8 l2, Matrix Ainv){ __u8 det; __u8 t20, t10, t21, t12, t01, t02; int log_det; /* compute some intermediate results: */ t20 = gfpow[l2 - l0]; /* t20 = r^l2/r^l0 */ t10 = gfpow[l1 - l0]; /* t10 = r^l1/r^l0 */ t21 = gfpow[l2 - l1]; /* t21 = r^l2/r^l1 */ t12 = gfpow[l1 - l2 + 255]; /* t12 = r^l1/r^l2 */ t01 = gfpow[l0 - l1 + 255]; /* t01 = r^l0/r^l1 */ t02 = gfpow[l0 - l2 + 255]; /* t02 = r^l0/r^l2 */ /* Calculate the determinant of matrix A_3^-1 (sometimes * called the Vandermonde determinant): */ det = gfadd(t20, gfadd(t10, gfadd(t21, gfadd(t12, gfadd(t01, t02))))); if (!det) { TRACE_FUN(ft_t_any); TRACE_ABORT(0, ft_t_err, "Inversion failed (3 CRC errors, >0 CRC failures)"); } log_det = 255 - gflog[det]; /* Now, calculate all of the coefficients: */ Ainv[0][0]= gfmul_exp(gfadd(gfpow[l1], gfpow[l2]), log_det); Ainv[0][1]= gfmul_exp(gfadd(t21, t12), log_det); Ainv[0][2]= gfmul_exp(gfadd(gfpow[255 - l1], gfpow[255 - l2]),log_det); Ainv[1][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l2]), log_det); Ainv[1][1]= gfmul_exp(gfadd(t20, t02), log_det); Ainv[1][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l2]),log_det); Ainv[2][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l1]), log_det); Ainv[2][1]= gfmul_exp(gfadd(t10, t01), log_det); Ainv[2][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l1]),log_det); return 1;}static inline int gfinv2(__u8 l0, __u8 l1, Matrix Ainv){ __u8 det; __u8 t1, t2; int log_det; t1 = gfpow[255 - l0]; t2 = gfpow[255 - l1]; det = gfadd(t1, t2); if (!det) { TRACE_FUN(ft_t_any); TRACE_ABORT(0, ft_t_err, "Inversion failed (2 CRC errors, >0 CRC failures)"); } log_det = 255 - gflog[det]; /* Now, calculate all of the coefficients: */ Ainv[0][0] = Ainv[1][0] = gfpow[log_det]; Ainv[0][1] = gfmul_exp(t2, log_det); Ainv[1][1] = gfmul_exp(t1, log_det); return 1;}/* Multiply matrix A by vector S and return result in vector B. M is * assumed to be of order NxN, S and B of order Nx1. */static inline void gfmat_mul(int n, Matrix A, __u8 *s, __u8 *b){ int i, j; __u8 dot_prod;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -