📄 i2ellis.c
字号:
if (pB->i2ePom.e.porPorts1 != 8) { COMPLETE(pB, I2EE_INCONSIST); } break; case POR_ID_II_6: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0x3f; // Six Port if (pB->i2ePom.e.porPorts1 != 6) { COMPLETE(pB, I2EE_INCONSIST); } break; } // Fix up the "good channel list based on any errors reported. if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1) { pB->i2eGoodMap[0] &= ~0x0f; } if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2) { pB->i2eGoodMap[0] &= ~0xf0; } break; // POR_ID_FII case case POR_ID_FIIEX: // IntelliPort-IIEX pB->i2eFifoStyle = FIFO_IIEX; itemp = pB->i2ePom.e.porFifoSize; // Implicit assumption that fifo would not grow beyond 32k, // nor would ever be less than 256. if (itemp < 8 || itemp > 15) { COMPLETE(pB, I2EE_INCONSIST); } pB->i2eFifoSize = (1 << itemp); // These are based on what P.O.S.T thinks should be there, based on // box ID registers ilimit = pB->i2ePom.e.porNumBoxes; if (ilimit > ABS_MAX_BOXES) { ilimit = ABS_MAX_BOXES; } // For as many boxes as EXIST, gives the type of box. // Added 8/6/93: check for the ISA-4 (asic) which looks like an // expandable but for whom "8 or 16?" is not the right question. utemp = pB->i2ePom.e.porFlags; if (utemp & POR_CEX4) { pB->i2eChannelMap[0] = 0x000f; } else { utemp &= POR_BOXES; for (itemp = 0; itemp < ilimit; itemp++) { pB->i2eChannelMap[itemp] = ((utemp & POR_BOX_16) ? 0xffff : 0x00ff); utemp >>= 1; } } // These are based on what P.O.S.T actually found. utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1; for (itemp = 0; itemp < ilimit; itemp++) { pB->i2eGoodMap[itemp] = 0; if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f; if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0; if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00; if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000; utemp >>= 4; } // Now determine whether we should transfer in 8 or 16-bit mode. switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) ) { case POR_BUS_SLOT16 | POR_BUS_DIP16: pB->i2eDataWidth16 = YES; pB->i2eMaxIrq = 15; break; case POR_BUS_SLOT16: pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 15; break; case 0: case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care. default: pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 7; break; } break; // POR_ID_FIIEX case default: // Unknown type of board COMPLETE(pB, I2EE_BAD_FAMILY); break; } // End the switch based on family // Temporarily, claim there is no room in the outbound fifo. // We will maintain this whenever we check for an empty outbound FIFO. pB->i2eFifoRemains = 0; // Now, based on the bus type, should we expect to be able to re-configure // interrupts (say, for testing purposes). switch (pB->i2ePom.e.porBus & POR_BUS_TYPE) { case POR_BUS_T_ISA: case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok. pB->i2eChangeIrq = YES; break; case POR_BUS_T_MCA: case POR_BUS_T_EISA: pB->i2eChangeIrq = NO; break; default: COMPLETE(pB, I2EE_BADBUS); } if (pB->i2eDataWidth16 == YES) { pB->i2eWriteBuf = iiWriteBuf16; pB->i2eReadBuf = iiReadBuf16; pB->i2eWriteWord = iiWriteWord16; pB->i2eReadWord = iiReadWord16; } else { pB->i2eWriteBuf = iiWriteBuf8; pB->i2eReadBuf = iiReadBuf8; pB->i2eWriteWord = iiWriteWord8; pB->i2eReadWord = iiReadWord8; } switch(pB->i2eFifoStyle) { case FIFO_II: pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII; pB->i2eTxMailEmpty = iiTxMailEmptyII; pB->i2eTrySendMail = iiTrySendMailII; pB->i2eGetMail = iiGetMailII; pB->i2eEnableMailIrq = iiEnableMailIrqII; pB->i2eWriteMask = iiWriteMaskII; break; case FIFO_IIEX: pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX; pB->i2eTxMailEmpty = iiTxMailEmptyIIEX; pB->i2eTrySendMail = iiTrySendMailIIEX; pB->i2eGetMail = iiGetMailIIEX; pB->i2eEnableMailIrq = iiEnableMailIrqIIEX; pB->i2eWriteMask = iiWriteMaskIIEX; break; default: COMPLETE(pB, I2EE_INCONSIST); } // Initialize state information. pB->i2eState = II_STATE_READY; // Ready to load loadware. // Some Final cleanup: // For some boards, the bootstrap firmware may perform some sort of test // resulting in a stray character pending in the incoming mailbox. If one is // there, it should be read and discarded, especially since for the standard // firmware, it's the mailbox that interrupts the host. pB->i2eStartMail = iiGetMail(pB); // Throw it away and clear the mailbox structure element pB->i2eStartMail = NO_MAIL_HERE; // Everything is ok now, return with good status/ pB->i2eValid = I2E_MAGIC; COMPLETE(pB, I2EE_GOOD);}//=======================================================// Delay Routines//// iiDelayIO// iiNop//=======================================================static voidii2DelayWakeup(unsigned long id){ wake_up_interruptible ( &pDelayWait );}//******************************************************************************// Function: ii2DelayTimer(mseconds)// Parameters: mseconds - number of milliseconds to delay//// Returns: Nothing//// Description://// This routine delays for approximately mseconds milliseconds and is intended// to be called indirectly through i2Delay field in i2eBordStr. It uses the// Linux timer_list mechanism.//// The Linux timers use a unit called "jiffies" which are 10mS in the Intel// architecture. This function rounds the delay period up to the next "jiffy".// In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended// for Alpha platforms at this time.////******************************************************************************static voidii2DelayTimer(unsigned int mseconds){ wait_queue_t wait; init_waitqueue_entry(&wait, current); init_timer ( pDelayTimer ); add_wait_queue(&pDelayWait, &wait); set_current_state( TASK_INTERRUPTIBLE ); pDelayTimer->expires = jiffies + ( mseconds + 9 ) / 10; pDelayTimer->function = ii2DelayWakeup; pDelayTimer->data = 0; add_timer ( pDelayTimer ); schedule(); set_current_state( TASK_RUNNING ); remove_wait_queue(&pDelayWait, &wait); del_timer ( pDelayTimer );}#if 0//static void ii2DelayIO(unsigned int);//******************************************************************************// !!! Not Used, this is DOS crap, some of you young folks may be interested in// in how things were done in the stone age of caculating machines !!!// Function: ii2DelayIO(mseconds)// Parameters: mseconds - number of milliseconds to delay//// Returns: Nothing//// Description://// This routine delays for approximately mseconds milliseconds and is intended// to be called indirectly through i2Delay field in i2eBordStr. It is intended// for use where a clock-based function is impossible: for example, DOS drivers.//// This function uses the IN instruction to place bounds on the timing and// assumes that ii2Safe has been set. This is because I/O instructions are not// subject to caching and will therefore take a certain minimum time. To ensure// the delay is at least long enough on fast machines, it is based on some// fastest-case calculations. On slower machines this may cause VERY long// delays. (3 x fastest case). In the fastest case, everything is cached except// the I/O instruction itself.//// Timing calculations:// The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O// operation in question is a byte operation to an odd address. For 8-bit// operations, the architecture generally enforces two wait states. At 10 MHz, a// single cycle time is 100nS. A read operation at two wait states takes 6// cycles for a total time of 600nS. Therefore approximately 1666 iterations// would be required to generate a single millisecond delay. The worst// (reasonable) case would be an 8MHz system with no cacheing. In this case, the// I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code// fetch of other instructions in the loop would take time (zero wait states,// however) and would be hard to estimate. This is minimized by using in-line// assembler for the in inner loop of IN instructions. This consists of just a// few bytes. So we'll guess about four code fetches per loop. Each code fetch// should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is// that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.//// So much for theoretical timings: results using 1666 value on some actual// machines:// IBM 286 6MHz 3.15 mS// Zenith 386 33MHz 2.45 mS// (brandX) 386 33MHz 1.90 mS (has cache)// (brandY) 486 33MHz 2.35 mS// NCR 486 ?? 1.65 mS (microchannel)//// For most machines, it is probably safe to scale this number back (remember,// for robust operation use an actual timed delay if possible), so we are using// a value of 1190. This yields 1.17 mS for the fastest machine in our sample,// 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.//// 1/29/93:// The above timings are too slow. Actual cycle times might be faster. ISA cycle// times could approach 500 nS, and ...// The IBM model 77 being microchannel has no wait states for 8-bit reads and// seems to be accessing the I/O at 440 nS per access (from start of one to// start of next). This would imply we need 1000/.440 = 2272 iterations to// guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in// fact enough. For diagnostics, we keep the level at 1190, but developers note// this needs tuning.//// Safe assumption: 2270 i/o reads = 1 millisecond////******************************************************************************static int ii2DelValue = 1190; // See timing calculations below // 1666 for fastest theoretical machine // 1190 safe for most fast 386 machines // 1000 for fastest machine tested here // 540 (sic) for AT286/6Mhzstatic voidii2DelayIO(unsigned int mseconds){ if (!ii2Safe) return; /* Do nothing if this variable uninitialized */ while(mseconds--) { int i = ii2DelValue; while ( i-- ) { INB ( ii2Safe ); } }}#endif //******************************************************************************// Function: ii2Nop()// Parameters: None//// Returns: Nothing//// Description://// iiInitialize will set i2eDelay to this if the delay parameter is NULL. This// saves checking for a NULL pointer at every call.//******************************************************************************static voidii2Nop(void){ return; // no mystery here}//=======================================================// Routines which are available in 8/16-bit versions, or// in different fifo styles. These are ALL called// indirectly through the board structure.//=======================================================//******************************************************************************// Function: iiWriteBuf16(pB, address, count)// Parameters: pB - pointer to board structure// address - address of data to write// count - number of data bytes to write//// Returns: True if everything appears copacetic.// False if there is any error: the pB->i2eError field has the error//// Description://// Writes 'count' bytes from 'address' to the data fifo specified by the board// structure pointer pB. Should count happen to be odd, an extra pad byte is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -