📄 serial.c
字号:
* gs_send_packet * * If there is data to send, a packet is built in the given * buffer and the size is returned. If there is no data to * send, 0 is returned. If there is any error a negative * error number is returned. * * Called during USB completion routine, on interrupt time. * * We assume that disconnect will not happen until all completion * routines have completed, so we can assume that the dev_port * array does not change during the lifetime of this function. */static int gs_send_packet(struct gs_dev *dev, char *packet, unsigned int size){ unsigned int len; struct gs_port *port; /* TEMPORARY -- only port 0 is supported right now */ port = dev->dev_port[0]; if (port == NULL) { printk(KERN_ERR "gs_send_packet: port=%d, NULL port pointer\n", 0); return -EIO; } spin_lock(&port->port_lock); len = gs_buf_data_avail(port->port_write_buf); if (len < size) size = len; if (size == 0) goto exit; size = gs_buf_get(port->port_write_buf, packet, size); if (port->port_tty) wake_up_interruptible(&port->port_tty->write_wait);exit: spin_unlock(&port->port_lock); return size;}/* * gs_recv_packet * * Called for each USB packet received. Reads the packet * header and stuffs the data in the appropriate tty buffer. * Returns 0 if successful, or a negative error number. * * Called during USB completion routine, on interrupt time. * * We assume that disconnect will not happen until all completion * routines have completed, so we can assume that the dev_port * array does not change during the lifetime of this function. */static int gs_recv_packet(struct gs_dev *dev, char *packet, unsigned int size){ unsigned int len; struct gs_port *port; int ret; /* TEMPORARY -- only port 0 is supported right now */ port = dev->dev_port[0]; if (port == NULL) { printk(KERN_ERR "gs_recv_packet: port=%d, NULL port pointer\n", port->port_num); return -EIO; } spin_lock(&port->port_lock); if (port->port_open_count == 0) { printk(KERN_ERR "gs_recv_packet: port=%d, port is closed\n", port->port_num); ret = -EIO; goto exit; } if (port->port_tty == NULL) { printk(KERN_ERR "gs_recv_packet: port=%d, NULL tty pointer\n", port->port_num); ret = -EIO; goto exit; } if (port->port_tty->magic != TTY_MAGIC) { printk(KERN_ERR "gs_recv_packet: port=%d, bad tty magic\n", port->port_num); ret = -EIO; goto exit; } len = (unsigned int)(TTY_FLIPBUF_SIZE - port->port_tty->flip.count); if (len < size) size = len; if (size > 0) { memcpy(port->port_tty->flip.char_buf_ptr, packet, size); port->port_tty->flip.char_buf_ptr += size; port->port_tty->flip.count += size; tty_flip_buffer_push(port->port_tty); wake_up_interruptible(&port->port_tty->read_wait); } ret = 0;exit: spin_unlock(&port->port_lock); return ret;}/** gs_read_complete*/static void gs_read_complete(struct usb_ep *ep, struct usb_request *req){ int ret; struct gs_dev *dev = ep->driver_data; if (dev == NULL) { printk(KERN_ERR "gs_read_complete: NULL device pointer\n"); return; } switch(req->status) { case 0: /* normal completion */ gs_recv_packet(dev, req->buf, req->actual);requeue: req->length = ep->maxpacket; if ((ret=usb_ep_queue(ep, req, GFP_ATOMIC))) { printk(KERN_ERR "gs_read_complete: cannot queue read request, ret=%d\n", ret); } break; case -ESHUTDOWN: /* disconnect */ gs_debug("gs_read_complete: shutdown\n"); gs_free_req(ep, req); break; default: /* unexpected */ printk(KERN_ERR "gs_read_complete: unexpected status error, status=%d\n", req->status); goto requeue; break; }}/** gs_write_complete*/static void gs_write_complete(struct usb_ep *ep, struct usb_request *req){ struct gs_dev *dev = ep->driver_data; struct gs_req_entry *gs_req = req->context; if (dev == NULL) { printk(KERN_ERR "gs_write_complete: NULL device pointer\n"); return; } switch(req->status) { case 0: /* normal completion */requeue: if (gs_req == NULL) { printk(KERN_ERR "gs_write_complete: NULL request pointer\n"); return; } spin_lock(&dev->dev_lock); list_add(&gs_req->re_entry, &dev->dev_req_list); spin_unlock(&dev->dev_lock); gs_send(dev); break; case -ESHUTDOWN: /* disconnect */ gs_debug("gs_write_complete: shutdown\n"); gs_free_req(ep, req); break; default: printk(KERN_ERR "gs_write_complete: unexpected status error, status=%d\n", req->status); goto requeue; break; }}/* Gadget Driver *//* * gs_bind * * Called on module load. Allocates and initializes the device * structure and a control request. */static int gs_bind(struct usb_gadget *gadget){ int ret; struct usb_ep *ep; struct gs_dev *dev; int gcnum; /* Some controllers can't support CDC ACM: * - sh doesn't support multiple interfaces or configs; * - sa1100 doesn't have a third interrupt endpoint */ if (gadget_is_sh(gadget) || gadget_is_sa1100(gadget)) use_acm = 0; gcnum = usb_gadget_controller_number(gadget); if (gcnum >= 0) gs_device_desc.bcdDevice = cpu_to_le16(GS_VERSION_NUM | gcnum); else { printk(KERN_WARNING "gs_bind: controller '%s' not recognized\n", gadget->name); /* unrecognized, but safe unless bulk is REALLY quirky */ gs_device_desc.bcdDevice = __constant_cpu_to_le16(GS_VERSION_NUM|0x0099); } usb_ep_autoconfig_reset(gadget); ep = usb_ep_autoconfig(gadget, &gs_fullspeed_in_desc); if (!ep) goto autoconf_fail; EP_IN_NAME = ep->name; ep->driver_data = ep; /* claim the endpoint */ ep = usb_ep_autoconfig(gadget, &gs_fullspeed_out_desc); if (!ep) goto autoconf_fail; EP_OUT_NAME = ep->name; ep->driver_data = ep; /* claim the endpoint */ if (use_acm) { ep = usb_ep_autoconfig(gadget, &gs_fullspeed_notify_desc); if (!ep) { printk(KERN_ERR "gs_bind: cannot run ACM on %s\n", gadget->name); goto autoconf_fail; } gs_device_desc.idProduct = __constant_cpu_to_le16( GS_CDC_PRODUCT_ID), EP_NOTIFY_NAME = ep->name; ep->driver_data = ep; /* claim the endpoint */ } gs_device_desc.bDeviceClass = use_acm ? USB_CLASS_COMM : USB_CLASS_VENDOR_SPEC; gs_device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket;#ifdef CONFIG_USB_GADGET_DUALSPEED gs_qualifier_desc.bDeviceClass = use_acm ? USB_CLASS_COMM : USB_CLASS_VENDOR_SPEC; /* assume ep0 uses the same packet size for both speeds */ gs_qualifier_desc.bMaxPacketSize0 = gs_device_desc.bMaxPacketSize0; /* assume endpoints are dual-speed */ gs_highspeed_notify_desc.bEndpointAddress = gs_fullspeed_notify_desc.bEndpointAddress; gs_highspeed_in_desc.bEndpointAddress = gs_fullspeed_in_desc.bEndpointAddress; gs_highspeed_out_desc.bEndpointAddress = gs_fullspeed_out_desc.bEndpointAddress;#endif /* CONFIG_USB_GADGET_DUALSPEED */ usb_gadget_set_selfpowered(gadget); if (gadget->is_otg) { gs_otg_descriptor.bmAttributes |= USB_OTG_HNP, gs_bulk_config_desc.bmAttributes |= USB_CONFIG_ATT_WAKEUP; gs_acm_config_desc.bmAttributes |= USB_CONFIG_ATT_WAKEUP; } gs_device = dev = kmalloc(sizeof(struct gs_dev), GFP_KERNEL); if (dev == NULL) return -ENOMEM; snprintf(manufacturer, sizeof(manufacturer), "%s %s with %s", system_utsname.sysname, system_utsname.release, gadget->name); memset(dev, 0, sizeof(struct gs_dev)); dev->dev_gadget = gadget; spin_lock_init(&dev->dev_lock); INIT_LIST_HEAD(&dev->dev_req_list); set_gadget_data(gadget, dev); if ((ret=gs_alloc_ports(dev, GFP_KERNEL)) != 0) { printk(KERN_ERR "gs_bind: cannot allocate ports\n"); gs_unbind(gadget); return ret; } /* preallocate control response and buffer */ dev->dev_ctrl_req = gs_alloc_req(gadget->ep0, GS_MAX_DESC_LEN, GFP_KERNEL); if (dev->dev_ctrl_req == NULL) { gs_unbind(gadget); return -ENOMEM; } dev->dev_ctrl_req->complete = gs_setup_complete; gadget->ep0->driver_data = dev; printk(KERN_INFO "gs_bind: %s %s bound\n", GS_LONG_NAME, GS_VERSION_STR); return 0;autoconf_fail: printk(KERN_ERR "gs_bind: cannot autoconfigure on %s\n", gadget->name); return -ENODEV;}/* * gs_unbind * * Called on module unload. Frees the control request and device * structure. */static void gs_unbind(struct usb_gadget *gadget){ struct gs_dev *dev = get_gadget_data(gadget); gs_device = NULL; /* read/write requests already freed, only control request remains */ if (dev != NULL) { if (dev->dev_ctrl_req != NULL) { gs_free_req(gadget->ep0, dev->dev_ctrl_req); dev->dev_ctrl_req = NULL; } gs_free_ports(dev); kfree(dev); set_gadget_data(gadget, NULL); } printk(KERN_INFO "gs_unbind: %s %s unbound\n", GS_LONG_NAME, GS_VERSION_STR);}/* * gs_setup * * Implements all the control endpoint functionality that's not * handled in hardware or the hardware driver. * * Returns the size of the data sent to the host, or a negative * error number. */static int gs_setup(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl){ int ret = -EOPNOTSUPP; struct gs_dev *dev = get_gadget_data(gadget); struct usb_request *req = dev->dev_ctrl_req; u16 wIndex = le16_to_cpu(ctrl->wIndex); u16 wValue = le16_to_cpu(ctrl->wValue); u16 wLength = le16_to_cpu(ctrl->wLength); switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: ret = gs_setup_standard(gadget,ctrl); break; case USB_TYPE_CLASS: ret = gs_setup_class(gadget,ctrl); break; default: printk(KERN_ERR "gs_setup: unknown request, type=%02x, request=%02x, value=%04x, index=%04x, length=%d\n", ctrl->bRequestType, ctrl->bRequest, wValue, wIndex, wLength); break; } /* respond with data transfer before status phase? */ if (ret >= 0) { req->length = ret; req->zero = ret < wLength && (ret % gadget->ep0->maxpacket) == 0; ret = usb_ep_queue(gadget->ep0, req, GFP_ATOMIC); if (ret < 0) { printk(KERN_ERR "gs_setup: cannot queue response, ret=%d\n", ret); req->status = 0; gs_setup_complete(gadget->ep0, req); } } /* device either stalls (ret < 0) or reports success */ return ret;}static int gs_setup_standard(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl){ int ret = -EOPNOTSUPP; struct gs_dev *dev = get_gadget_data(gadget); struct usb_request *req = dev->dev_ctrl_req; u16 wIndex = le16_to_cpu(ctrl->wIndex); u16 wValue = le16_to_cpu(ctrl->wValue); u16 wLength = le16_to_cpu(ctrl->wLength); switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: if (ctrl->bRequestType != USB_DIR_IN) break; switch (wValue >> 8) { case USB_DT_DEVICE: ret = min(wLength, (u16)sizeof(struct usb_device_descriptor)); memcpy(req->buf, &gs_device_desc, ret); break;#ifdef CONFIG_USB_GADGET_DUALSPEED case USB_DT_DEVICE_QUALIFIER: if (!gadget->is_dualspeed) break; ret = min(wLength, (u16)sizeof(struct usb_qualifier_descriptor)); memcpy(req->buf, &gs_qualifier_desc, ret); break; case USB_DT_OTHER_SPEED_CONFIG: if (!gadget->is_dualspeed) break; /* fall through */#endif /* CONFIG_USB_GADGET_DUALSPEED */ case USB_DT_CONFIG: ret = gs_build_config_buf(req->buf, gadget->speed, wValue >> 8, wValue & 0xff, gadget->is_otg); if (ret >= 0) ret = min(wLength, (u16)ret); break; case USB_DT_STRING: /* wIndex == language code. */ ret = usb_gadget_get_string(&gs_string_table, wValue & 0xff, req->buf); if (ret >= 0) ret = min(wLength, (u16)ret); break; } break; case USB_REQ_SET_CONFIGURATION: if (ctrl->bRequestType != 0) break; spin_lock(&dev->dev_lock); ret = gs_set_config(dev, wValue); spin_unlock(&dev->dev_lock); break; case USB_REQ_GET_CONFIGURATION: if (ctrl->bRequestType != USB_DIR_IN) break; *(u8 *)req->buf = dev->dev_config; ret = min(wLength, (u16)1); break; case USB_REQ_SET_INTERFACE: if (ctrl->bRequestType != USB_RECIP_INTERFACE || !dev->dev_config || wIndex >= GS_MAX_NUM_INTERFACES) break; if (dev->dev_config == GS_BULK_CONFIG_ID && wIndex != GS_BULK_INTERFACE_ID) break; /* no alternate interface settings */ if (wValue != 0) break; spin_lock(&dev->dev_lock); /* PXA hardware partially handles SET_INTERFACE; * we need to kluge around that interference. */ if (gadget_is_pxa(gadget)) { ret = gs_set_config(dev, use_acm ? GS_ACM_CONFIG_ID : GS_BULK_CONFIG_ID); goto set_interface_done; } if (dev->dev_config != GS_BULK_CONFIG_ID && wIndex == GS_CONTROL_INTERFACE_ID) { if (dev->dev_notify_ep) { usb_ep_disable(dev->dev_notify_ep); usb_ep_enable(dev->dev_notify_ep, dev->dev_notify_ep_desc); } } else { usb_ep_disable(dev->dev_in_ep); usb_ep_disable(dev->dev_out_ep); usb_ep_enable(dev->dev_in_ep, dev->dev_in_ep_desc); usb_ep_enable(dev->dev_out_ep, dev->dev_out_ep_desc); } ret = 0;set_interface_done: spin_unlock(&dev->dev_lock); break; case USB_REQ_GET_INTERFACE: if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE) || dev->dev_config == GS_NO_CONFIG_ID) break; if (wIndex >= GS_MAX_NUM_INTERFACES || (dev->dev_config == GS_BULK_CONFIG_ID && wIndex != GS_BULK_INTERFACE_ID)) { ret = -EDOM; break; } /* no alternate interface settings */ *(u8 *)req->buf = 0; ret = min(wLength, (u16)1); break; default: printk(KERN_ERR "gs_setup: unknown standard request, type=%02x, request=%02x, value=%04x, index=%04x, length=%d\n", ctrl->bRequestType, ctrl->bRequest, wValue, wIndex, wLength); break; } return ret;}static int gs_setup_class(struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl){ int ret = -EOPNOTSUPP; struct gs_dev *dev = get_gadget_data(gadget); struct gs_port *port = dev->dev_port[0]; /* ACM only has one port */ struct usb_request *req = dev->dev_ctrl_req; u16 wIndex = le16_to_cpu(ctrl->wIndex); u16 wValue = le16_to_cpu(ctrl->wValue); u16 wLength = le16_to_cpu(ctrl->wLength); switch (ctrl->bRequest) { case USB_CDC_REQ_SET_LINE_CODING: ret = min(wLength, (u16)sizeof(struct usb_cdc_line_coding)); if (port) { spin_lock(&port->port_lock); memcpy(&port->port_line_coding, req->buf, ret); spin_unlock(&port->port_lock); } break; case USB_CDC_REQ_GET_LINE_CODING: port = dev->dev_port[0]; /* ACM only has one port */ ret = min(wLength, (u16)sizeof(struct usb_cdc_line_coding)); if (port) { spin_lock(&port->port_lock); memcpy(req->buf, &port->port_line_coding, ret); spin_unlock(&port->port_lock); } break; case USB_CDC_REQ_SET_CONTROL_LINE_STATE: ret = 0; break; default: printk(KERN_ERR "gs_setup: unknown class request, type=%02x, request=%02x, value=%04x, index=%04x, length=%d\n", ctrl->bRequestType, ctrl->bRequest, wValue, wIndex, wLength); break; } return ret;}/* * gs_setup_complete */static void gs_setup_complete(struct usb_ep *ep, struct usb_request *req){ if (req->status || req->actual != req->length) { printk(KERN_ERR "gs_setup_complete: status error, status=%d, actual=%d, length=%d\n", req->status, req->actual, req->length); }}/* * gs_disconnect *
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -