📄 uhci-hcd.h
字号:
#ifndef __LINUX_UHCI_HCD_H#define __LINUX_UHCI_HCD_H#include <linux/list.h>#include <linux/usb.h>#define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)#define PIPE_DEVEP_MASK 0x0007ff00/* * Universal Host Controller Interface data structures and defines *//* Command register */#define USBCMD 0#define USBCMD_RS 0x0001 /* Run/Stop */#define USBCMD_HCRESET 0x0002 /* Host reset */#define USBCMD_GRESET 0x0004 /* Global reset */#define USBCMD_EGSM 0x0008 /* Global Suspend Mode */#define USBCMD_FGR 0x0010 /* Force Global Resume */#define USBCMD_SWDBG 0x0020 /* SW Debug mode */#define USBCMD_CF 0x0040 /* Config Flag (sw only) */#define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) *//* Status register */#define USBSTS 2#define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */#define USBSTS_ERROR 0x0002 /* Interrupt due to error */#define USBSTS_RD 0x0004 /* Resume Detect */#define USBSTS_HSE 0x0008 /* Host System Error - basically PCI problems */#define USBSTS_HCPE 0x0010 /* Host Controller Process Error - the scripts were buggy */#define USBSTS_HCH 0x0020 /* HC Halted *//* Interrupt enable register */#define USBINTR 4#define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */#define USBINTR_RESUME 0x0002 /* Resume interrupt enable */#define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */#define USBINTR_SP 0x0008 /* Short packet interrupt enable */#define USBFRNUM 6#define USBFLBASEADD 8#define USBSOF 12#define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms *//* USB port status and control registers */#define USBPORTSC1 16#define USBPORTSC2 18#define USBPORTSC_CCS 0x0001 /* Current Connect Status ("device present") */#define USBPORTSC_CSC 0x0002 /* Connect Status Change */#define USBPORTSC_PE 0x0004 /* Port Enable */#define USBPORTSC_PEC 0x0008 /* Port Enable Change */#define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */#define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */#define USBPORTSC_RD 0x0040 /* Resume Detect */#define USBPORTSC_RES1 0x0080 /* reserved, always 1 */#define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */#define USBPORTSC_PR 0x0200 /* Port Reset *//* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */#define USBPORTSC_OC 0x0400 /* Over Current condition */#define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */#define USBPORTSC_SUSP 0x1000 /* Suspend */#define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */#define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */#define USBPORTSC_RES4 0x8000 /* reserved, write zeroes *//* Legacy support register */#define USBLEGSUP 0xc0#define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */#define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */#define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */#define UHCI_NULL_DATA_SIZE 0x7FF /* for UHCI controller TD */#define UHCI_PTR_BITS cpu_to_le32(0x000F)#define UHCI_PTR_TERM cpu_to_le32(0x0001)#define UHCI_PTR_QH cpu_to_le32(0x0002)#define UHCI_PTR_DEPTH cpu_to_le32(0x0004)#define UHCI_PTR_BREADTH cpu_to_le32(0x0000)#define UHCI_NUMFRAMES 1024 /* in the frame list [array] */#define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */#define CAN_SCHEDULE_FRAMES 1000 /* how far future frames can be scheduled *//* * Queue Headers *//* * One role of a QH is to hold a queue of TDs for some endpoint. Each QH is * used with one URB, and qh->element (updated by the HC) is either: * - the next unprocessed TD for the URB, or * - UHCI_PTR_TERM (when there's no more traffic for this endpoint), or * - the QH for the next URB queued to the same endpoint. * * The other role of a QH is to serve as a "skeleton" framelist entry, so we * can easily splice a QH for some endpoint into the schedule at the right * place. Then qh->element is UHCI_PTR_TERM. * * In the frame list, qh->link maintains a list of QHs seen by the HC: * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... */struct uhci_qh { /* Hardware fields */ __le32 link; /* Next queue */ __le32 element; /* Queue element pointer */ /* Software fields */ dma_addr_t dma_handle; struct urb_priv *urbp; struct list_head list; struct list_head remove_list;} __attribute__((aligned(16)));/* * We need a special accessor for the element pointer because it is * subject to asynchronous updates by the controller. */static __le32 inline qh_element(struct uhci_qh *qh) { __le32 element = qh->element; barrier(); return element;}/* * Transfer Descriptors *//* * for TD <status>: */#define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */#define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */#define TD_CTRL_C_ERR_SHIFT 27#define TD_CTRL_LS (1 << 26) /* Low Speed Device */#define TD_CTRL_IOS (1 << 25) /* Isochronous Select */#define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */#define TD_CTRL_ACTIVE (1 << 23) /* TD Active */#define TD_CTRL_STALLED (1 << 22) /* TD Stalled */#define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */#define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */#define TD_CTRL_NAK (1 << 19) /* NAK Received */#define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */#define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */#define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */#define TD_CTRL_ANY_ERROR (TD_CTRL_STALLED | TD_CTRL_DBUFERR | \ TD_CTRL_BABBLE | TD_CTRL_CRCTIME | TD_CTRL_BITSTUFF)#define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT)#define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000)#define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & TD_CTRL_ACTLEN_MASK) /* 1-based *//* * for TD <info>: (a.k.a. Token) */#define td_token(td) le32_to_cpu((td)->token)#define TD_TOKEN_DEVADDR_SHIFT 8#define TD_TOKEN_TOGGLE_SHIFT 19#define TD_TOKEN_TOGGLE (1 << 19)#define TD_TOKEN_EXPLEN_SHIFT 21#define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n - 1 */#define TD_TOKEN_PID_MASK 0xFF#define uhci_explen(len) ((len) << TD_TOKEN_EXPLEN_SHIFT)#define uhci_expected_length(token) ((((token) >> 21) + 1) & TD_TOKEN_EXPLEN_MASK)#define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)#define uhci_endpoint(token) (((token) >> 15) & 0xf)#define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)#define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)#define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK)#define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN)#define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN)/* * The documentation says "4 words for hardware, 4 words for software". * * That's silly, the hardware doesn't care. The hardware only cares that * the hardware words are 16-byte aligned, and we can have any amount of * sw space after the TD entry. * * td->link points to either another TD (not necessarily for the same urb or * even the same endpoint), or nothing (PTR_TERM), or a QH (for queued urbs). */struct uhci_td { /* Hardware fields */ __le32 link; __le32 status; __le32 token; __le32 buffer; /* Software fields */ dma_addr_t dma_handle; struct list_head list; struct list_head remove_list; int frame; /* for iso: what frame? */ struct list_head fl_list;} __attribute__((aligned(16)));/* * We need a special accessor for the control/status word because it is * subject to asynchronous updates by the controller. */static u32 inline td_status(struct uhci_td *td) { __le32 status = td->status; barrier(); return le32_to_cpu(status);}/* * Skeleton Queue Headers *//* * The UHCI driver places Interrupt, Control and Bulk into QH's both * to group together TD's for one transfer, and also to faciliate queuing * of URB's. To make it easy to insert entries into the schedule, we have * a skeleton of QH's for each predefined Interrupt latency, low-speed * control, full-speed control and terminating QH (see explanation for * the terminating QH below). * * When we want to add a new QH, we add it to the end of the list for the * skeleton QH. * * For instance, the queue can look like this: * * skel int128 QH * dev 1 interrupt QH * dev 5 interrupt QH * skel int64 QH * skel int32 QH * ... * skel int1 QH * skel low-speed control QH * dev 5 control QH * skel full-speed control QH * skel bulk QH * dev 1 bulk QH * dev 2 bulk QH * skel terminating QH * * The terminating QH is used for 2 reasons: * - To place a terminating TD which is used to workaround a PIIX bug * (see Intel errata for explanation), and * - To loop back to the full-speed control queue for full-speed bandwidth * reclamation. * * Isochronous transfers are stored before the start of the skeleton * schedule and don't use QH's. While the UHCI spec doesn't forbid the * use of QH's for Isochronous, it doesn't use them either. And the spec * says that queues never advance on an error completion status, which * makes them totally unsuitable for Isochronous transfers. */#define UHCI_NUM_SKELQH 12#define skel_int128_qh skelqh[0]#define skel_int64_qh skelqh[1]#define skel_int32_qh skelqh[2]#define skel_int16_qh skelqh[3]#define skel_int8_qh skelqh[4]#define skel_int4_qh skelqh[5]#define skel_int2_qh skelqh[6]#define skel_int1_qh skelqh[7]#define skel_ls_control_qh skelqh[8]#define skel_fs_control_qh skelqh[9]#define skel_bulk_qh skelqh[10]#define skel_term_qh skelqh[11]/* * Search tree for determining where <interval> fits in the skelqh[] * skeleton. * * An interrupt request should be placed into the slowest skelqh[] * which meets the interval/period/frequency requirement. * An interrupt request is allowed to be faster than <interval> but not slower. * * For a given <interval>, this function returns the appropriate/matching * skelqh[] index value. */static inline int __interval_to_skel(int interval){ if (interval < 16) { if (interval < 4) { if (interval < 2) return 7; /* int1 for 0-1 ms */ return 6; /* int2 for 2-3 ms */ } if (interval < 8) return 5; /* int4 for 4-7 ms */ return 4; /* int8 for 8-15 ms */ } if (interval < 64) { if (interval < 32) return 3; /* int16 for 16-31 ms */ return 2; /* int32 for 32-63 ms */ } if (interval < 128) return 1; /* int64 for 64-127 ms */ return 0; /* int128 for 128-255 ms (Max.) */}/* * The UHCI controller and root hub *//* * States for the root hub: * * To prevent "bouncing" in the presence of electrical noise, * when there are no devices attached we delay for 1 second in the * RUNNING_NODEVS state before switching to the AUTO_STOPPED state. * * (Note that the AUTO_STOPPED state won't be necessary once the hub * driver learns to autosuspend.) */enum uhci_rh_state { /* In the following states the HC must be halted. * These two must come first. */ UHCI_RH_RESET, UHCI_RH_SUSPENDED, UHCI_RH_AUTO_STOPPED, UHCI_RH_RESUMING, /* In this state the HC changes from running to halted, * so it can legally appear either way. */ UHCI_RH_SUSPENDING, /* In the following states it's an error if the HC is halted. * These two must come last. */ UHCI_RH_RUNNING, /* The normal state */ UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */};/* * The full UHCI controller information: */struct uhci_hcd { /* debugfs */ struct dentry *dentry; /* Grabbed from PCI */ unsigned long io_addr; struct dma_pool *qh_pool; struct dma_pool *td_pool; struct uhci_td *term_td; /* Terminating TD, see UHCI bug */ struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QH's */ spinlock_t lock; dma_addr_t frame_dma_handle; /* Hardware frame list */ __le32 *frame; void **frame_cpu; /* CPU's frame list */ int fsbr; /* Full-speed bandwidth reclamation */ unsigned long fsbrtimeout; /* FSBR delay */ enum uhci_rh_state rh_state; unsigned long auto_stop_time; /* When to AUTO_STOP */ unsigned int frame_number; /* As of last check */ unsigned int is_stopped;#define UHCI_IS_STOPPED 9999 /* Larger than a frame # */ unsigned int scan_in_progress:1; /* Schedule scan is running */ unsigned int need_rescan:1; /* Redo the schedule scan */ unsigned int hc_inaccessible:1; /* HC is suspended or dead */ unsigned int working_RD:1; /* Suspended root hub doesn't need to be polled */ /* Support for port suspend/resume/reset */ unsigned long port_c_suspend; /* Bit-arrays of ports */ unsigned long suspended_ports; unsigned long resuming_ports; unsigned long ports_timeout; /* Time to stop signalling */ /* Main list of URB's currently controlled by this HC */ struct list_head urb_list; /* List of QH's that are done, but waiting to be unlinked (race) */ struct list_head qh_remove_list; unsigned int qh_remove_age; /* Age in frames */ /* List of TD's that are done, but waiting to be freed (race) */ struct list_head td_remove_list; unsigned int td_remove_age; /* Age in frames */ /* List of asynchronously unlinked URB's */ struct list_head urb_remove_list; unsigned int urb_remove_age; /* Age in frames */ /* List of URB's awaiting completion callback */ struct list_head complete_list; int rh_numports; /* Number of root-hub ports */ wait_queue_head_t waitqh; /* endpoint_disable waiters */};/* Convert between a usb_hcd pointer and the corresponding uhci_hcd */static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd){ return (struct uhci_hcd *) (hcd->hcd_priv);}static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci){ return container_of((void *) uhci, struct usb_hcd, hcd_priv);}#define uhci_dev(u) (uhci_to_hcd(u)->self.controller)/* * Private per-URB data */struct urb_priv { struct list_head urb_list; struct urb *urb; struct uhci_qh *qh; /* QH for this URB */ struct list_head td_list; unsigned fsbr : 1; /* URB turned on FSBR */ unsigned fsbr_timeout : 1; /* URB timed out on FSBR */ unsigned queued : 1; /* QH was queued (not linked in) */ unsigned short_control_packet : 1; /* If we get a short packet during */ /* a control transfer, retrigger */ /* the status phase */ unsigned long fsbrtime; /* In jiffies */ struct list_head queue_list;};/* * Locking in uhci.c * * Almost everything relating to the hardware schedule and processing * of URBs is protected by uhci->lock. urb->status is protected by * urb->lock; that's the one exception. * * To prevent deadlocks, never lock uhci->lock while holding urb->lock. * The safe order of locking is: * * #1 uhci->lock * #2 urb->lock *//* Some special IDs */#define PCI_VENDOR_ID_GENESYS 0x17a0#define PCI_DEVICE_ID_GL880S_UHCI 0x8083#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -