⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fault.c

📁 linux-2.6.15.6
💻 C
字号:
/* *  linux/arch/x86-64/mm/fault.c * *  Copyright (C) 1995  Linus Torvalds *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. */#include <linux/config.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/string.h>#include <linux/types.h>#include <linux/ptrace.h>#include <linux/mman.h>#include <linux/mm.h>#include <linux/smp.h>#include <linux/smp_lock.h>#include <linux/interrupt.h>#include <linux/init.h>#include <linux/tty.h>#include <linux/vt_kern.h>		/* For unblank_screen() */#include <linux/compiler.h>#include <linux/module.h>#include <linux/kprobes.h>#include <asm/system.h>#include <asm/uaccess.h>#include <asm/pgalloc.h>#include <asm/smp.h>#include <asm/tlbflush.h>#include <asm/proto.h>#include <asm/kdebug.h>#include <asm-generic/sections.h>#include <asm/kdebug.h>void bust_spinlocks(int yes){	int loglevel_save = console_loglevel;	if (yes) {		oops_in_progress = 1;	} else {#ifdef CONFIG_VT		unblank_screen();#endif		oops_in_progress = 0;		/*		 * OK, the message is on the console.  Now we call printk()		 * without oops_in_progress set so that printk will give klogd		 * a poke.  Hold onto your hats...		 */		console_loglevel = 15;		/* NMI oopser may have shut the console up */		printk(" ");		console_loglevel = loglevel_save;	}}/* Sometimes the CPU reports invalid exceptions on prefetch.   Check that here and ignore.   Opcode checker based on code by Richard Brunner */static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,				unsigned long error_code){ 	unsigned char *instr;	int scan_more = 1;	int prefetch = 0; 	unsigned char *max_instr;	/* If it was a exec fault ignore */	if (error_code & (1<<4))		return 0;		instr = (unsigned char *)convert_rip_to_linear(current, regs);	max_instr = instr + 15;	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)		return 0;	while (scan_more && instr < max_instr) { 		unsigned char opcode;		unsigned char instr_hi;		unsigned char instr_lo;		if (__get_user(opcode, instr))			break; 		instr_hi = opcode & 0xf0; 		instr_lo = opcode & 0x0f; 		instr++;		switch (instr_hi) { 		case 0x20:		case 0x30:			/* Values 0x26,0x2E,0x36,0x3E are valid x86			   prefixes.  In long mode, the CPU will signal			   invalid opcode if some of these prefixes are			   present so we will never get here anyway */			scan_more = ((instr_lo & 7) == 0x6);			break;					case 0x40:			/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes			   Need to figure out under what instruction mode the			   instruction was issued ... */			/* Could check the LDT for lm, but for now it's good			   enough to assume that long mode only uses well known			   segments or kernel. */			scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);			break;					case 0x60:			/* 0x64 thru 0x67 are valid prefixes in all modes. */			scan_more = (instr_lo & 0xC) == 0x4;			break;				case 0xF0:			/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */			scan_more = !instr_lo || (instr_lo>>1) == 1;			break;					case 0x00:			/* Prefetch instruction is 0x0F0D or 0x0F18 */			scan_more = 0;			if (__get_user(opcode, instr)) 				break;			prefetch = (instr_lo == 0xF) &&				(opcode == 0x0D || opcode == 0x18);			break;					default:			scan_more = 0;			break;		} 	}	return prefetch;}static int bad_address(void *p) { 	unsigned long dummy;	return __get_user(dummy, (unsigned long *)p);} void dump_pagetable(unsigned long address){	pgd_t *pgd;	pud_t *pud;	pmd_t *pmd;	pte_t *pte;	asm("movq %%cr3,%0" : "=r" (pgd));	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 	pgd += pgd_index(address);	printk("PGD %lx ", pgd_val(*pgd));	if (bad_address(pgd)) goto bad;	if (!pgd_present(*pgd)) goto ret; 	pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address);	if (bad_address(pud)) goto bad;	printk("PUD %lx ", pud_val(*pud));	if (!pud_present(*pud))	goto ret;	pmd = pmd_offset(pud, address);	if (bad_address(pmd)) goto bad;	printk("PMD %lx ", pmd_val(*pmd));	if (!pmd_present(*pmd))	goto ret;	 	pte = pte_offset_kernel(pmd, address);	if (bad_address(pte)) goto bad;	printk("PTE %lx", pte_val(*pte)); ret:	printk("\n");	return;bad:	printk("BAD\n");}static const char errata93_warning[] = KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"KERN_ERR "******* Please consider a BIOS update.\n"KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";/* Workaround for K8 erratum #93 & buggy BIOS.   BIOS SMM functions are required to use a specific workaround   to avoid corruption of the 64bit RIP register on C stepping K8.    A lot of BIOS that didn't get tested properly miss this.    The OS sees this as a page fault with the upper 32bits of RIP cleared.   Try to work around it here.   Note we only handle faults in kernel here. */static int is_errata93(struct pt_regs *regs, unsigned long address) {	static int warned;	if (address != regs->rip)		return 0;	if ((address >> 32) != 0) 		return 0;	address |= 0xffffffffUL << 32;	if ((address >= (u64)_stext && address <= (u64)_etext) || 	    (address >= MODULES_VADDR && address <= MODULES_END)) { 		if (!warned) {			printk(errata93_warning); 					warned = 1;		}		regs->rip = address;		return 1;	}	return 0;} int unhandled_signal(struct task_struct *tsk, int sig){	if (tsk->pid == 1)		return 1;	if (tsk->ptrace & PT_PTRACED)		return 0;	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);}static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,				 unsigned long error_code){	unsigned long flags = oops_begin();	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",	       current->comm, address);	dump_pagetable(address);	__die("Bad pagetable", regs, error_code);	oops_end(flags);	do_exit(SIGKILL);}/* * Handle a fault on the vmalloc or module mapping area * * This assumes no large pages in there. */static int vmalloc_fault(unsigned long address){	pgd_t *pgd, *pgd_ref;	pud_t *pud, *pud_ref;	pmd_t *pmd, *pmd_ref;	pte_t *pte, *pte_ref;	/* Copy kernel mappings over when needed. This can also	   happen within a race in page table update. In the later	   case just flush. */	pgd = pgd_offset(current->mm ?: &init_mm, address);	pgd_ref = pgd_offset_k(address);	if (pgd_none(*pgd_ref))		return -1;	if (pgd_none(*pgd))		set_pgd(pgd, *pgd_ref);	/* Below here mismatches are bugs because these lower tables	   are shared */	pud = pud_offset(pgd, address);	pud_ref = pud_offset(pgd_ref, address);	if (pud_none(*pud_ref))		return -1;	if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))		BUG();	pmd = pmd_offset(pud, address);	pmd_ref = pmd_offset(pud_ref, address);	if (pmd_none(*pmd_ref))		return -1;	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))		BUG();	pte_ref = pte_offset_kernel(pmd_ref, address);	if (!pte_present(*pte_ref))		return -1;	pte = pte_offset_kernel(pmd, address);	/* Don't use pte_page here, because the mappings can point	   outside mem_map, and the NUMA hash lookup cannot handle	   that. */	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))		BUG();	__flush_tlb_all();	return 0;}int page_fault_trace = 0;int exception_trace = 1;/* * This routine handles page faults.  It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. * * error_code: *	bit 0 == 0 means no page found, 1 means protection fault *	bit 1 == 0 means read, 1 means write *	bit 2 == 0 means kernel, 1 means user-mode *      bit 3 == 1 means fault was an instruction fetch */asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,					unsigned long error_code){	struct task_struct *tsk;	struct mm_struct *mm;	struct vm_area_struct * vma;	unsigned long address;	const struct exception_table_entry *fixup;	int write;	unsigned long flags;	siginfo_t info;	/* get the address */	__asm__("movq %%cr2,%0":"=r" (address));	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,					SIGSEGV) == NOTIFY_STOP)		return;	if (likely(regs->eflags & X86_EFLAGS_IF))		local_irq_enable();	if (unlikely(page_fault_trace))		printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",		       regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code); 	tsk = current;	mm = tsk->mm;	info.si_code = SEGV_MAPERR;	/*	 * We fault-in kernel-space virtual memory on-demand. The	 * 'reference' page table is init_mm.pgd.	 *	 * NOTE! We MUST NOT take any locks for this case. We may	 * be in an interrupt or a critical region, and should	 * only copy the information from the master page table,	 * nothing more.	 *	 * This verifies that the fault happens in kernel space	 * (error_code & 4) == 0, and that the fault was not a	 * protection error (error_code & 1) == 0.	 */	if (unlikely(address >= TASK_SIZE64)) {		if (!(error_code & 5) &&		      ((address >= VMALLOC_START && address < VMALLOC_END) ||		       (address >= MODULES_VADDR && address < MODULES_END))) {			if (vmalloc_fault(address) < 0)				goto bad_area_nosemaphore;			return;		}		/*		 * Don't take the mm semaphore here. If we fixup a prefetch		 * fault we could otherwise deadlock.		 */		goto bad_area_nosemaphore;	}	if (unlikely(error_code & (1 << 3)))		pgtable_bad(address, regs, error_code);	/*	 * If we're in an interrupt or have no user	 * context, we must not take the fault..	 */	if (unlikely(in_atomic() || !mm))		goto bad_area_nosemaphore; again:	/* When running in the kernel we expect faults to occur only to	 * addresses in user space.  All other faults represent errors in the	 * kernel and should generate an OOPS.  Unfortunatly, in the case of an	 * erroneous fault occuring in a code path which already holds mmap_sem	 * we will deadlock attempting to validate the fault against the	 * address space.  Luckily the kernel only validly references user	 * space from well defined areas of code, which are listed in the	 * exceptions table.	 *	 * As the vast majority of faults will be valid we will only perform	 * the source reference check when there is a possibilty of a deadlock.	 * Attempt to lock the address space, if we cannot we then validate the	 * source.  If this is invalid we can skip the address space check,	 * thus avoiding the deadlock.	 */	if (!down_read_trylock(&mm->mmap_sem)) {		if ((error_code & 4) == 0 &&		    !search_exception_tables(regs->rip))			goto bad_area_nosemaphore;		down_read(&mm->mmap_sem);	}	vma = find_vma(mm, address);	if (!vma)		goto bad_area;	if (likely(vma->vm_start <= address))		goto good_area;	if (!(vma->vm_flags & VM_GROWSDOWN))		goto bad_area;	if (error_code & 4) {		// XXX: align red zone size with ABI 		if (address + 128 < regs->rsp)			goto bad_area;	}	if (expand_stack(vma, address))		goto bad_area;/* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */good_area:	info.si_code = SEGV_ACCERR;	write = 0;	switch (error_code & 3) {		default:	/* 3: write, present */			/* fall through */		case 2:		/* write, not present */			if (!(vma->vm_flags & VM_WRITE))				goto bad_area;			write++;			break;		case 1:		/* read, present */			goto bad_area;		case 0:		/* read, not present */			if (!(vma->vm_flags & (VM_READ | VM_EXEC)))				goto bad_area;	}	/*	 * If for any reason at all we couldn't handle the fault,	 * make sure we exit gracefully rather than endlessly redo	 * the fault.	 */	switch (handle_mm_fault(mm, vma, address, write)) {	case VM_FAULT_MINOR:		tsk->min_flt++;		break;	case VM_FAULT_MAJOR:		tsk->maj_flt++;		break;	case VM_FAULT_SIGBUS:		goto do_sigbus;	default:		goto out_of_memory;	}	up_read(&mm->mmap_sem);	return;/* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */bad_area:	up_read(&mm->mmap_sem);bad_area_nosemaphore:	/* User mode accesses just cause a SIGSEGV */	if (error_code & 4) {		if (is_prefetch(regs, address, error_code))			return;		/* Work around K8 erratum #100 K8 in compat mode		   occasionally jumps to illegal addresses >4GB.  We		   catch this here in the page fault handler because		   these addresses are not reachable. Just detect this		   case and return.  Any code segment in LDT is		   compatibility mode. */		if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&		    (address >> 32))			return;		if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {			printk(		       "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",					tsk->pid > 1 ? KERN_INFO : KERN_EMERG,					tsk->comm, tsk->pid, address, regs->rip,					regs->rsp, error_code);		}       		tsk->thread.cr2 = address;		/* Kernel addresses are always protection faults */		tsk->thread.error_code = error_code | (address >= TASK_SIZE);		tsk->thread.trap_no = 14;		info.si_signo = SIGSEGV;		info.si_errno = 0;		/* info.si_code has been set above */		info.si_addr = (void __user *)address;		force_sig_info(SIGSEGV, &info, tsk);		return;	}no_context:		/* Are we prepared to handle this kernel fault?  */	fixup = search_exception_tables(regs->rip);	if (fixup) {		regs->rip = fixup->fixup;		return;	}	/* 	 * Hall of shame of CPU/BIOS bugs.	 */ 	if (is_prefetch(regs, address, error_code)) 		return;	if (is_errata93(regs, address))		return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */	flags = oops_begin();	if (address < PAGE_SIZE)		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");	else		printk(KERN_ALERT "Unable to handle kernel paging request");	printk(" at %016lx RIP: \n" KERN_ALERT,address);	printk_address(regs->rip);	printk("\n");	dump_pagetable(address);	__die("Oops", regs, error_code);	/* Executive summary in case the body of the oops scrolled away */	printk(KERN_EMERG "CR2: %016lx\n", address);	oops_end(flags);	do_exit(SIGKILL);/* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */out_of_memory:	up_read(&mm->mmap_sem);	if (current->pid == 1) { 		yield();		goto again;	}	printk("VM: killing process %s\n", tsk->comm);	if (error_code & 4)		do_exit(SIGKILL);	goto no_context;do_sigbus:	up_read(&mm->mmap_sem);	/* Kernel mode? Handle exceptions or die */	if (!(error_code & 4))		goto no_context;	tsk->thread.cr2 = address;	tsk->thread.error_code = error_code;	tsk->thread.trap_no = 14;	info.si_signo = SIGBUS;	info.si_errno = 0;	info.si_code = BUS_ADRERR;	info.si_addr = (void __user *)address;	force_sig_info(SIGBUS, &info, tsk);	return;}static int __init enable_pagefaulttrace(char *str){	page_fault_trace = 1;	return 0;}__setup("pagefaulttrace", enable_pagefaulttrace);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -