⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 init.c

📁 linux-2.6.15.6
💻 C
字号:
/*  $Id: init.c,v 1.103 2001/11/19 19:03:08 davem Exp $ *  linux/arch/sparc/mm/init.c * *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) *  Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be) *  Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) *  Copyright (C) 2000 Anton Blanchard (anton@samba.org) */#include <linux/config.h>#include <linux/module.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/string.h>#include <linux/types.h>#include <linux/ptrace.h>#include <linux/mman.h>#include <linux/mm.h>#include <linux/swap.h>#include <linux/initrd.h>#include <linux/init.h>#include <linux/highmem.h>#include <linux/bootmem.h>#include <asm/system.h>#include <asm/vac-ops.h>#include <asm/page.h>#include <asm/pgtable.h>#include <asm/vaddrs.h>#include <asm/pgalloc.h>	/* bug in asm-generic/tlb.h: check_pgt_cache */#include <asm/tlb.h>DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);unsigned long *sparc_valid_addr_bitmap;unsigned long phys_base;unsigned long pfn_base;unsigned long page_kernel;struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1];unsigned long sparc_unmapped_base;struct pgtable_cache_struct pgt_quicklists;/* References to section boundaries */extern char __init_begin, __init_end, _start, _end, etext , edata;/* Initial ramdisk setup */extern unsigned int sparc_ramdisk_image;extern unsigned int sparc_ramdisk_size;unsigned long highstart_pfn, highend_pfn;pte_t *kmap_pte;pgprot_t kmap_prot;#define kmap_get_fixmap_pte(vaddr) \	pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))void __init kmap_init(void){	/* cache the first kmap pte */	kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));	kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE);}void show_mem(void){	printk("Mem-info:\n");	show_free_areas();	printk("Free swap:       %6ldkB\n",	       nr_swap_pages << (PAGE_SHIFT-10));	printk("%ld pages of RAM\n", totalram_pages);	printk("%d free pages\n", nr_free_pages());#if 0 /* undefined pgtable_cache_size, pgd_cache_size */	printk("%ld pages in page table cache\n",pgtable_cache_size);#ifndef CONFIG_SMP	if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d)		printk("%ld entries in page dir cache\n",pgd_cache_size);#endif	#endif}void __init sparc_context_init(int numctx){	int ctx;	ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL);	for(ctx = 0; ctx < numctx; ctx++) {		struct ctx_list *clist;		clist = (ctx_list_pool + ctx);		clist->ctx_number = ctx;		clist->ctx_mm = NULL;	}	ctx_free.next = ctx_free.prev = &ctx_free;	ctx_used.next = ctx_used.prev = &ctx_used;	for(ctx = 0; ctx < numctx; ctx++)		add_to_free_ctxlist(ctx_list_pool + ctx);}extern unsigned long cmdline_memory_size;unsigned long last_valid_pfn;unsigned long calc_highpages(void){	int i;	int nr = 0;	for (i = 0; sp_banks[i].num_bytes != 0; i++) {		unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;		unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;		if (end_pfn <= max_low_pfn)			continue;		if (start_pfn < max_low_pfn)			start_pfn = max_low_pfn;		nr += end_pfn - start_pfn;	}	return nr;}unsigned long calc_max_low_pfn(void){	int i;	unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);	unsigned long curr_pfn, last_pfn;	last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT;	for (i = 1; sp_banks[i].num_bytes != 0; i++) {		curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;		if (curr_pfn >= tmp) {			if (last_pfn < tmp)				tmp = last_pfn;			break;		}		last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;	}	return tmp;}unsigned long __init bootmem_init(unsigned long *pages_avail){	unsigned long bootmap_size, start_pfn;	unsigned long end_of_phys_memory = 0UL;	unsigned long bootmap_pfn, bytes_avail, size;	int i;	bytes_avail = 0UL;	for (i = 0; sp_banks[i].num_bytes != 0; i++) {		end_of_phys_memory = sp_banks[i].base_addr +			sp_banks[i].num_bytes;		bytes_avail += sp_banks[i].num_bytes;		if (cmdline_memory_size) {			if (bytes_avail > cmdline_memory_size) {				unsigned long slack = bytes_avail - cmdline_memory_size;				bytes_avail -= slack;				end_of_phys_memory -= slack;				sp_banks[i].num_bytes -= slack;				if (sp_banks[i].num_bytes == 0) {					sp_banks[i].base_addr = 0xdeadbeef;				} else {					sp_banks[i+1].num_bytes = 0;					sp_banks[i+1].base_addr = 0xdeadbeef;				}				break;			}		}	}	/* Start with page aligned address of last symbol in kernel	 * image.  	 */	start_pfn  = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));	/* Now shift down to get the real physical page frame number. */	start_pfn >>= PAGE_SHIFT;	bootmap_pfn = start_pfn;	max_pfn = end_of_phys_memory >> PAGE_SHIFT;	max_low_pfn = max_pfn;	highstart_pfn = highend_pfn = max_pfn;	if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {		highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);		max_low_pfn = calc_max_low_pfn();		printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",		    calc_highpages() >> (20 - PAGE_SHIFT));	}#ifdef CONFIG_BLK_DEV_INITRD	/* Now have to check initial ramdisk, so that bootmap does not overwrite it */	if (sparc_ramdisk_image) {		if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)			sparc_ramdisk_image -= KERNBASE;		initrd_start = sparc_ramdisk_image + phys_base;		initrd_end = initrd_start + sparc_ramdisk_size;		if (initrd_end > end_of_phys_memory) {			printk(KERN_CRIT "initrd extends beyond end of memory "		                 	 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",			       initrd_end, end_of_phys_memory);			initrd_start = 0;		}		if (initrd_start) {			if (initrd_start >= (start_pfn << PAGE_SHIFT) &&			    initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)				bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;		}	}#endif		/* Initialize the boot-time allocator. */	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,					 max_low_pfn);	/* Now register the available physical memory with the	 * allocator.	 */	*pages_avail = 0;	for (i = 0; sp_banks[i].num_bytes != 0; i++) {		unsigned long curr_pfn, last_pfn;		curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;		if (curr_pfn >= max_low_pfn)			break;		last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;		if (last_pfn > max_low_pfn)			last_pfn = max_low_pfn;		/*		 * .. finally, did all the rounding and playing		 * around just make the area go away?		 */		if (last_pfn <= curr_pfn)			continue;		size = (last_pfn - curr_pfn) << PAGE_SHIFT;		*pages_avail += last_pfn - curr_pfn;		free_bootmem(sp_banks[i].base_addr, size);	}#ifdef CONFIG_BLK_DEV_INITRD	if (initrd_start) {		/* Reserve the initrd image area. */		size = initrd_end - initrd_start;		reserve_bootmem(initrd_start, size);		*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;		initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;		initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;			}#endif	/* Reserve the kernel text/data/bss. */	size = (start_pfn << PAGE_SHIFT) - phys_base;	reserve_bootmem(phys_base, size);	*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;	/* Reserve the bootmem map.   We do not account for it	 * in pages_avail because we will release that memory	 * in free_all_bootmem.	 */	size = bootmap_size;	reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);	*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;	return max_pfn;}/* * check_pgt_cache * * This is called at the end of unmapping of VMA (zap_page_range), * to rescan the page cache for architecture specific things, * presumably something like sun4/sun4c PMEGs. Most architectures * define check_pgt_cache empty. * * We simply copy the 2.4 implementation for now. */int pgt_cache_water[2] = { 25, 50 };void check_pgt_cache(void){	do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);}/* * paging_init() sets up the page tables: We call the MMU specific * init routine based upon the Sun model type on the Sparc. * */extern void sun4c_paging_init(void);extern void srmmu_paging_init(void);extern void device_scan(void);void __init paging_init(void){	switch(sparc_cpu_model) {	case sun4c:	case sun4e:	case sun4:		sun4c_paging_init();		sparc_unmapped_base = 0xe0000000;		BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000);		break;	case sun4m:	case sun4d:		srmmu_paging_init();		sparc_unmapped_base = 0x50000000;		BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000);		break;	default:		prom_printf("paging_init: Cannot init paging on this Sparc\n");		prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model);		prom_printf("paging_init: Halting...\n");		prom_halt();	};	/* Initialize the protection map with non-constant, MMU dependent values. */	protection_map[0] = PAGE_NONE;	protection_map[1] = PAGE_READONLY;	protection_map[2] = PAGE_COPY;	protection_map[3] = PAGE_COPY;	protection_map[4] = PAGE_READONLY;	protection_map[5] = PAGE_READONLY;	protection_map[6] = PAGE_COPY;	protection_map[7] = PAGE_COPY;	protection_map[8] = PAGE_NONE;	protection_map[9] = PAGE_READONLY;	protection_map[10] = PAGE_SHARED;	protection_map[11] = PAGE_SHARED;	protection_map[12] = PAGE_READONLY;	protection_map[13] = PAGE_READONLY;	protection_map[14] = PAGE_SHARED;	protection_map[15] = PAGE_SHARED;	btfixup();	device_scan();}struct cache_palias *sparc_aliases;static void __init taint_real_pages(void){	int i;	for (i = 0; sp_banks[i].num_bytes; i++) {		unsigned long start, end;		start = sp_banks[i].base_addr;		end = start + sp_banks[i].num_bytes;		while (start < end) {			set_bit(start >> 20, sparc_valid_addr_bitmap);			start += PAGE_SIZE;		}	}}void map_high_region(unsigned long start_pfn, unsigned long end_pfn){	unsigned long tmp;#ifdef CONFIG_DEBUG_HIGHMEM	printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn);#endif	for (tmp = start_pfn; tmp < end_pfn; tmp++) {		struct page *page = pfn_to_page(tmp);		ClearPageReserved(page);		set_page_count(page, 1);		__free_page(page);		totalhigh_pages++;	}}void __init mem_init(void){	int codepages = 0;	int datapages = 0;	int initpages = 0; 	int reservedpages = 0;	int i;	if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {		prom_printf("BUG: fixmap and pkmap areas overlap\n");		prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n",		       PKMAP_BASE,		       (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,		       FIXADDR_START);		prom_printf("Please mail sparclinux@vger.kernel.org.\n");		prom_halt();	}	/* Saves us work later. */	memset((void *)&empty_zero_page, 0, PAGE_SIZE);	i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);	i += 1;	sparc_valid_addr_bitmap = (unsigned long *)		__alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL);	if (sparc_valid_addr_bitmap == NULL) {		prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");		prom_halt();	}	memset(sparc_valid_addr_bitmap, 0, i << 2);	taint_real_pages();	max_mapnr = last_valid_pfn - pfn_base;	high_memory = __va(max_low_pfn << PAGE_SHIFT);	totalram_pages = free_all_bootmem();	for (i = 0; sp_banks[i].num_bytes != 0; i++) {		unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;		unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;		num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT;		if (end_pfn <= highstart_pfn)			continue;		if (start_pfn < highstart_pfn)			start_pfn = highstart_pfn;		map_high_region(start_pfn, end_pfn);	}		totalram_pages += totalhigh_pages;	codepages = (((unsigned long) &etext) - ((unsigned long)&_start));	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;	datapages = (((unsigned long) &edata) - ((unsigned long)&etext));	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;	initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin));	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;	/* Ignore memory holes for the purpose of counting reserved pages */	for (i=0; i < max_low_pfn; i++)		if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap)		    && PageReserved(pfn_to_page(i)))			reservedpages++;	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",	       (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),	       num_physpages << (PAGE_SHIFT - 10),	       codepages << (PAGE_SHIFT-10),	       reservedpages << (PAGE_SHIFT - 10),	       datapages << (PAGE_SHIFT-10), 	       initpages << (PAGE_SHIFT-10),	       totalhigh_pages << (PAGE_SHIFT-10));}void free_initmem (void){	unsigned long addr;	addr = (unsigned long)(&__init_begin);	for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {		struct page *p;		p = virt_to_page(addr);		ClearPageReserved(p);		set_page_count(p, 1);		__free_page(p);		totalram_pages++;		num_physpages++;	}	printk (KERN_INFO "Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);}#ifdef CONFIG_BLK_DEV_INITRDvoid free_initrd_mem(unsigned long start, unsigned long end){	if (start < end)		printk (KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);	for (; start < end; start += PAGE_SIZE) {		struct page *p = virt_to_page(start);		ClearPageReserved(p);		set_page_count(p, 1);		__free_page(p);		num_physpages++;	}}#endifvoid sparc_flush_page_to_ram(struct page *page){	unsigned long vaddr = (unsigned long)page_address(page);	if (vaddr)		__flush_page_to_ram(vaddr);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -