📄 kprobes.c
字号:
/* * Kernel Probes (KProbes) * arch/i386/kernel/kprobes.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation ( includes contributions from * Rusty Russell). * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */#include <linux/config.h>#include <linux/kprobes.h>#include <linux/ptrace.h>#include <linux/preempt.h>#include <asm/cacheflush.h>#include <asm/kdebug.h>#include <asm/desc.h>void jprobe_return_end(void);DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);/* * returns non-zero if opcode modifies the interrupt flag. */static inline int is_IF_modifier(kprobe_opcode_t opcode){ switch (opcode) { case 0xfa: /* cli */ case 0xfb: /* sti */ case 0xcf: /* iret/iretd */ case 0x9d: /* popf/popfd */ return 1; } return 0;}int __kprobes arch_prepare_kprobe(struct kprobe *p){ return 0;}void __kprobes arch_copy_kprobe(struct kprobe *p){ memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); p->opcode = *p->addr;}void __kprobes arch_arm_kprobe(struct kprobe *p){ *p->addr = BREAKPOINT_INSTRUCTION; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t));}void __kprobes arch_disarm_kprobe(struct kprobe *p){ *p->addr = p->opcode; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t));}void __kprobes arch_remove_kprobe(struct kprobe *p){}static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb){ kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags; kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;}static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb){ __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags; kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;}static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb){ __get_cpu_var(current_kprobe) = p; kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags = (regs->eflags & (TF_MASK | IF_MASK)); if (is_IF_modifier(p->opcode)) kcb->kprobe_saved_eflags &= ~IF_MASK;}static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs){ regs->eflags |= TF_MASK; regs->eflags &= ~IF_MASK; /*single step inline if the instruction is an int3*/ if (p->opcode == BREAKPOINT_INSTRUCTION) regs->eip = (unsigned long)p->addr; else regs->eip = (unsigned long)&p->ainsn.insn;}/* Called with kretprobe_lock held */void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs){ unsigned long *sara = (unsigned long *)®s->esp; struct kretprobe_instance *ri; if ((ri = get_free_rp_inst(rp)) != NULL) { ri->rp = rp; ri->task = current; ri->ret_addr = (kprobe_opcode_t *) *sara; /* Replace the return addr with trampoline addr */ *sara = (unsigned long) &kretprobe_trampoline; add_rp_inst(ri); } else { rp->nmissed++; }}/* * Interrupts are disabled on entry as trap3 is an interrupt gate and they * remain disabled thorough out this function. */static int __kprobes kprobe_handler(struct pt_regs *regs){ struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = NULL; unsigned long *lp; struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); /* Check if the application is using LDT entry for its code segment and * calculate the address by reading the base address from the LDT entry. */ if ((regs->xcs & 4) && (current->mm)) { lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8) + (char *) current->mm->context.ldt); addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip - sizeof(kprobe_opcode_t)); } else { addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t)); } /* Check we're not actually recursing */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS && *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { regs->eflags &= ~TF_MASK; regs->eflags |= kcb->kprobe_saved_eflags; goto no_kprobe; } /* We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } else { p = __get_cpu_var(current_kprobe); if (p->break_handler && p->break_handler(p, regs)) { goto ss_probe; } } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (regs->eflags & VM_MASK) { /* We are in virtual-8086 mode. Return 0 */ goto no_kprobe; } if (*addr != BREAKPOINT_INSTRUCTION) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Back up over the (now missing) int3 and run * the original instruction. */ regs->eip -= sizeof(kprobe_opcode_t); ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) /* handler has already set things up, so skip ss setup */ return 1;ss_probe: prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1;no_kprobe: preempt_enable_no_resched(); return ret;}/* * For function-return probes, init_kprobes() establishes a probepoint * here. When a retprobed function returns, this probe is hit and * trampoline_probe_handler() runs, calling the kretprobe's handler. */ void kretprobe_trampoline_holder(void) { asm volatile ( ".global kretprobe_trampoline\n" "kretprobe_trampoline: \n" "nop\n"); }/* * Called when we hit the probe point at kretprobe_trampoline */int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs){ struct kretprobe_instance *ri = NULL; struct hlist_head *head; struct hlist_node *node, *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; spin_lock_irqsave(&kretprobe_lock, flags); head = kretprobe_inst_table_head(current); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more then one return * return probe was registered for a target function. * * We can handle this because:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -