⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 acpi-cpufreq.c

📁 linux-2.6.15.6
💻 C
字号:
/* * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) * *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * *  This program is free software; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation; either version 2 of the License, or (at *  your option) any later version. * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License along *  with this program; if not, write to the Free Software Foundation, Inc., *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */#include <linux/config.h>#include <linux/kernel.h>#include <linux/module.h>#include <linux/init.h>#include <linux/cpufreq.h>#include <linux/proc_fs.h>#include <linux/seq_file.h>#include <linux/compiler.h>#include <linux/sched.h>	/* current */#include <asm/io.h>#include <asm/delay.h>#include <asm/uaccess.h>#include <linux/acpi.h>#include <acpi/processor.h>#include "speedstep-est-common.h"#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");MODULE_DESCRIPTION("ACPI Processor P-States Driver");MODULE_LICENSE("GPL");struct cpufreq_acpi_io {	struct acpi_processor_performance	acpi_data;	struct cpufreq_frequency_table		*freq_table;	unsigned int				resume;};static struct cpufreq_acpi_io	*acpi_io_data[NR_CPUS];static struct cpufreq_driver acpi_cpufreq_driver;static unsigned int acpi_pstate_strict;static intacpi_processor_write_port(	u16	port,	u8	bit_width,	u32	value){	if (bit_width <= 8) {		outb(value, port);	} else if (bit_width <= 16) {		outw(value, port);	} else if (bit_width <= 32) {		outl(value, port);	} else {		return -ENODEV;	}	return 0;}static intacpi_processor_read_port(	u16	port,	u8	bit_width,	u32	*ret){	*ret = 0;	if (bit_width <= 8) {		*ret = inb(port);	} else if (bit_width <= 16) {		*ret = inw(port);	} else if (bit_width <= 32) {		*ret = inl(port);	} else {		return -ENODEV;	}	return 0;}static intacpi_processor_set_performance (	struct cpufreq_acpi_io	*data,	unsigned int		cpu,	int			state){	u16			port = 0;	u8			bit_width = 0;	int			ret = 0;	u32			value = 0;	int			i = 0;	struct cpufreq_freqs    cpufreq_freqs;	cpumask_t		saved_mask;	int			retval;	dprintk("acpi_processor_set_performance\n");	/*	 * TBD: Use something other than set_cpus_allowed.	 * As set_cpus_allowed is a bit racy, 	 * with any other set_cpus_allowed for this process.	 */	saved_mask = current->cpus_allowed;	set_cpus_allowed(current, cpumask_of_cpu(cpu));	if (smp_processor_id() != cpu) {		return (-EAGAIN);	}		if (state == data->acpi_data.state) {		if (unlikely(data->resume)) {			dprintk("Called after resume, resetting to P%d\n", state);			data->resume = 0;		} else {			dprintk("Already at target state (P%d)\n", state);			retval = 0;			goto migrate_end;		}	}	dprintk("Transitioning from P%d to P%d\n",		data->acpi_data.state, state);	/* cpufreq frequency struct */	cpufreq_freqs.cpu = cpu;	cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;	cpufreq_freqs.new = data->freq_table[state].frequency;	/* notify cpufreq */	cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);	/*	 * First we write the target state's 'control' value to the	 * control_register.	 */	port = data->acpi_data.control_register.address;	bit_width = data->acpi_data.control_register.bit_width;	value = (u32) data->acpi_data.states[state].control;	dprintk("Writing 0x%08x to port 0x%04x\n", value, port);	ret = acpi_processor_write_port(port, bit_width, value);	if (ret) {		dprintk("Invalid port width 0x%04x\n", bit_width);		retval = ret;		goto migrate_end;	}	/*	 * Assume the write went through when acpi_pstate_strict is not used.	 * As read status_register is an expensive operation and there 	 * are no specific error cases where an IO port write will fail.	 */	if (acpi_pstate_strict) {		/* Then we read the 'status_register' and compare the value 		 * with the target state's 'status' to make sure the 		 * transition was successful.		 * Note that we'll poll for up to 1ms (100 cycles of 10us) 		 * before giving up.		 */		port = data->acpi_data.status_register.address;		bit_width = data->acpi_data.status_register.bit_width;		dprintk("Looking for 0x%08x from port 0x%04x\n",			(u32) data->acpi_data.states[state].status, port);		for (i=0; i<100; i++) {			ret = acpi_processor_read_port(port, bit_width, &value);			if (ret) {					dprintk("Invalid port width 0x%04x\n", bit_width);				retval = ret;				goto migrate_end;			}			if (value == (u32) data->acpi_data.states[state].status)				break;			udelay(10);		}	} else {		i = 0;		value = (u32) data->acpi_data.states[state].status;	}	/* notify cpufreq */	cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);	if (unlikely(value != (u32) data->acpi_data.states[state].status)) {		unsigned int tmp = cpufreq_freqs.new;		cpufreq_freqs.new = cpufreq_freqs.old;		cpufreq_freqs.old = tmp;		cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);		cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);		printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");		retval = -ENODEV;		goto migrate_end;	}	dprintk("Transition successful after %d microseconds\n", i * 10);	data->acpi_data.state = state;	retval = 0;migrate_end:	set_cpus_allowed(current, saved_mask);	return (retval);}static intacpi_cpufreq_target (	struct cpufreq_policy   *policy,	unsigned int target_freq,	unsigned int relation){	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	unsigned int next_state = 0;	unsigned int result = 0;	dprintk("acpi_cpufreq_setpolicy\n");	result = cpufreq_frequency_table_target(policy,			data->freq_table,			target_freq,			relation,			&next_state);	if (result)		return (result);	result = acpi_processor_set_performance (data, policy->cpu, next_state);	return (result);}static intacpi_cpufreq_verify (	struct cpufreq_policy   *policy){	unsigned int result = 0;	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	dprintk("acpi_cpufreq_verify\n");	result = cpufreq_frequency_table_verify(policy, 			data->freq_table);	return (result);}static unsigned longacpi_cpufreq_guess_freq (	struct cpufreq_acpi_io	*data,	unsigned int		cpu){	if (cpu_khz) {		/* search the closest match to cpu_khz */		unsigned int i;		unsigned long freq;		unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000;		for (i=0; i < (data->acpi_data.state_count - 1); i++) {			freq = freqn;			freqn = data->acpi_data.states[i+1].core_frequency * 1000;			if ((2 * cpu_khz) > (freqn + freq)) {				data->acpi_data.state = i;				return (freq);			}		}		data->acpi_data.state = data->acpi_data.state_count - 1;		return (freqn);	} else		/* assume CPU is at P0... */		data->acpi_data.state = 0;		return data->acpi_data.states[0].core_frequency * 1000;	}/*  * acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities * of this driver * @perf: processor-specific acpi_io_data struct * @cpu: CPU being initialized * * To avoid issues with legacy OSes, some BIOSes require to be informed of * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC  * accordingly, for Enhanced Speedstep. Actual call to _PDC is done in * driver/acpi/processor.c */static void acpi_processor_cpu_init_pdc_est(		struct acpi_processor_performance *perf, 		unsigned int cpu,		struct acpi_object_list *obj_list		){	union acpi_object *obj;	u32 *buf;	struct cpuinfo_x86 *c = cpu_data + cpu;	dprintk("acpi_processor_cpu_init_pdc_est\n");	if (!cpu_has(c, X86_FEATURE_EST))		return;	/* Initialize pdc. It will be used later. */	if (!obj_list)		return;			if (!(obj_list->count && obj_list->pointer))		return;	obj = obj_list->pointer;	if ((obj->buffer.length == 12) && obj->buffer.pointer) {		buf = (u32 *)obj->buffer.pointer;       		buf[0] = ACPI_PDC_REVISION_ID;       		buf[1] = 1;       		buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;		perf->pdc = obj_list;	}	return;} /* CPU specific PDC initialization */static void acpi_processor_cpu_init_pdc(		struct acpi_processor_performance *perf, 		unsigned int cpu,		struct acpi_object_list *obj_list		){	struct cpuinfo_x86 *c = cpu_data + cpu;	dprintk("acpi_processor_cpu_init_pdc\n");	perf->pdc = NULL;	if (cpu_has(c, X86_FEATURE_EST))		acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list);	return;}static intacpi_cpufreq_cpu_init (	struct cpufreq_policy   *policy){	unsigned int		i;	unsigned int		cpu = policy->cpu;	struct cpufreq_acpi_io	*data;	unsigned int		result = 0;	union acpi_object		arg0 = {ACPI_TYPE_BUFFER};	u32				arg0_buf[3];	struct acpi_object_list 	arg_list = {1, &arg0};	dprintk("acpi_cpufreq_cpu_init\n");	/* setup arg_list for _PDC settings */        arg0.buffer.length = 12;        arg0.buffer.pointer = (u8 *) arg0_buf;	data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);	if (!data)		return (-ENOMEM);	acpi_io_data[cpu] = data;	acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list);	result = acpi_processor_register_performance(&data->acpi_data, cpu);	data->acpi_data.pdc = NULL;	if (result)		goto err_free;	if (is_const_loops_cpu(cpu)) {		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;	}	/* capability check */	if (data->acpi_data.state_count <= 1) {		dprintk("No P-States\n");		result = -ENODEV;		goto err_unreg;	}	if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||	    (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {		dprintk("Unsupported address space [%d, %d]\n",			(u32) (data->acpi_data.control_register.space_id),			(u32) (data->acpi_data.status_register.space_id));		result = -ENODEV;		goto err_unreg;	}	/* alloc freq_table */	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL);	if (!data->freq_table) {		result = -ENOMEM;		goto err_unreg;	}	/* detect transition latency */	policy->cpuinfo.transition_latency = 0;	for (i=0; i<data->acpi_data.state_count; i++) {		if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)			policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000;	}	policy->governor = CPUFREQ_DEFAULT_GOVERNOR;	/* The current speed is unknown and not detectable by ACPI...  */	policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);	/* table init */	for (i=0; i<=data->acpi_data.state_count; i++)	{		data->freq_table[i].index = i;		if (i<data->acpi_data.state_count)			data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;		else			data->freq_table[i].frequency = CPUFREQ_TABLE_END;	}	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);	if (result) {		goto err_freqfree;	}	/* notify BIOS that we exist */	acpi_processor_notify_smm(THIS_MODULE);	printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",	       cpu);	for (i = 0; i < data->acpi_data.state_count; i++)		dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",			(i == data->acpi_data.state?'*':' '), i,			(u32) data->acpi_data.states[i].core_frequency,			(u32) data->acpi_data.states[i].power,			(u32) data->acpi_data.states[i].transition_latency);	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);		/*	 * the first call to ->target() should result in us actually	 * writing something to the appropriate registers.	 */	data->resume = 1;		return (result); err_freqfree:	kfree(data->freq_table); err_unreg:	acpi_processor_unregister_performance(&data->acpi_data, cpu); err_free:	kfree(data);	acpi_io_data[cpu] = NULL;	return (result);}static intacpi_cpufreq_cpu_exit (	struct cpufreq_policy   *policy){	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	dprintk("acpi_cpufreq_cpu_exit\n");	if (data) {		cpufreq_frequency_table_put_attr(policy->cpu);		acpi_io_data[policy->cpu] = NULL;		acpi_processor_unregister_performance(&data->acpi_data, policy->cpu);		kfree(data);	}	return (0);}static intacpi_cpufreq_resume (	struct cpufreq_policy   *policy){	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	dprintk("acpi_cpufreq_resume\n");	data->resume = 1;	return (0);}static struct freq_attr* acpi_cpufreq_attr[] = {	&cpufreq_freq_attr_scaling_available_freqs,	NULL,};static struct cpufreq_driver acpi_cpufreq_driver = {	.verify 	= acpi_cpufreq_verify,	.target 	= acpi_cpufreq_target,	.init		= acpi_cpufreq_cpu_init,	.exit		= acpi_cpufreq_cpu_exit,	.resume		= acpi_cpufreq_resume,	.name		= "acpi-cpufreq",	.owner		= THIS_MODULE,	.attr           = acpi_cpufreq_attr,};static int __initacpi_cpufreq_init (void){	int                     result = 0;	dprintk("acpi_cpufreq_init\n"); 	result = cpufreq_register_driver(&acpi_cpufreq_driver);		return (result);}static void __exitacpi_cpufreq_exit (void){	dprintk("acpi_cpufreq_exit\n");	cpufreq_unregister_driver(&acpi_cpufreq_driver);	return;}module_param(acpi_pstate_strict, uint, 0644);MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");late_initcall(acpi_cpufreq_init);module_exit(acpi_cpufreq_exit);MODULE_ALIAS("acpi");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -