⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 srat.c

📁 linux-2.6.15.6
💻 C
字号:
/* * Some of the code in this file has been gleaned from the 64 bit  * discontigmem support code base. * * Copyright (C) 2002, IBM Corp. * * All rights reserved.           * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT.  See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to Pat Gaughen <gone@us.ibm.com> */#include <linux/config.h>#include <linux/mm.h>#include <linux/bootmem.h>#include <linux/mmzone.h>#include <linux/acpi.h>#include <linux/nodemask.h>#include <asm/srat.h>#include <asm/topology.h>/* * proximity macros and definitions */#define NODE_ARRAY_INDEX(x)	((x) / 8)	/* 8 bits/char */#define NODE_ARRAY_OFFSET(x)	((x) % 8)	/* 8 bits/char */#define BMAP_SET(bmap, bit)	((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))#define BMAP_TEST(bmap, bit)	((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))#define MAX_PXM_DOMAINS		256	/* 1 byte and no promises about values *//* bitmap length; _PXM is at most 255 */#define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8) static u8 pxm_bitmap[PXM_BITMAP_LEN];	/* bitmap of proximity domains */#define MAX_CHUNKS_PER_NODE	4#define MAXCHUNKS		(MAX_CHUNKS_PER_NODE * MAX_NUMNODES)struct node_memory_chunk_s {	unsigned long	start_pfn;	unsigned long	end_pfn;	u8	pxm;		// proximity domain of node	u8	nid;		// which cnode contains this chunk?	u8	bank;		// which mem bank on this node};static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];static int num_memory_chunks;		/* total number of memory chunks */static int zholes_size_init;static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];extern void * boot_ioremap(unsigned long, unsigned long);/* Identify CPU proximity domains */static void __init parse_cpu_affinity_structure(char *p){	struct acpi_table_processor_affinity *cpu_affinity = 				(struct acpi_table_processor_affinity *) p;	if (!cpu_affinity->flags.enabled)		return;		/* empty entry */	/* mark this node as "seen" in node bitmap */	BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);	printk("CPU 0x%02X in proximity domain 0x%02X\n",		cpu_affinity->apic_id, cpu_affinity->proximity_domain);}/* * Identify memory proximity domains and hot-remove capabilities. * Fill node memory chunk list structure. */static void __init parse_memory_affinity_structure (char *sratp){	unsigned long long paddr, size;	unsigned long start_pfn, end_pfn; 	u8 pxm;	struct node_memory_chunk_s *p, *q, *pend;	struct acpi_table_memory_affinity *memory_affinity =			(struct acpi_table_memory_affinity *) sratp;	if (!memory_affinity->flags.enabled)		return;		/* empty entry */	/* mark this node as "seen" in node bitmap */	BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);	/* calculate info for memory chunk structure */	paddr = memory_affinity->base_addr_hi;	paddr = (paddr << 32) | memory_affinity->base_addr_lo;	size = memory_affinity->length_hi;	size = (size << 32) | memory_affinity->length_lo;		start_pfn = paddr >> PAGE_SHIFT;	end_pfn = (paddr + size) >> PAGE_SHIFT;		pxm = memory_affinity->proximity_domain;	if (num_memory_chunks >= MAXCHUNKS) {		printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",			size/(1024*1024), paddr);		return;	}	/* Insertion sort based on base address */	pend = &node_memory_chunk[num_memory_chunks];	for (p = &node_memory_chunk[0]; p < pend; p++) {		if (start_pfn < p->start_pfn)			break;	}	if (p < pend) {		for (q = pend; q >= p; q--)			*(q + 1) = *q;	}	p->start_pfn = start_pfn;	p->end_pfn = end_pfn;	p->pxm = pxm;	num_memory_chunks++;	printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",		start_pfn, end_pfn,		memory_affinity->memory_type,		memory_affinity->proximity_domain,		(memory_affinity->flags.hot_pluggable ?		 "enabled and removable" : "enabled" ) );}#if MAX_NR_ZONES != 4#error "MAX_NR_ZONES != 4, chunk_to_zone requires review"#endif/* Take a chunk of pages from page frame cstart to cend and count the number * of pages in each zone, returned via zones[]. */static __init void chunk_to_zones(unsigned long cstart, unsigned long cend, 		unsigned long *zones){	unsigned long max_dma;	extern unsigned long max_low_pfn;	int z;	unsigned long rend;	/* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide	 * similarly scoped information and should be handled in a consistant	 * manner.	 */	max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;	/* Split the hole into the zones in which it falls.  Repeatedly	 * take the segment in which the remaining hole starts, round it	 * to the end of that zone.	 */	memset(zones, 0, MAX_NR_ZONES * sizeof(long));	while (cstart < cend) {		if (cstart < max_dma) {			z = ZONE_DMA;			rend = (cend < max_dma)? cend : max_dma;		} else if (cstart < max_low_pfn) {			z = ZONE_NORMAL;			rend = (cend < max_low_pfn)? cend : max_low_pfn;		} else {			z = ZONE_HIGHMEM;			rend = cend;		}		zones[z] += rend - cstart;		cstart = rend;	}}/* * The SRAT table always lists ascending addresses, so can always * assume that the first "start" address that you see is the real * start of the node, and that the current "end" address is after * the previous one. */static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk){	/*	 * Only add present memory as told by the e820.	 * There is no guarantee from the SRAT that the memory it	 * enumerates is present at boot time because it represents	 * *possible* memory hotplug areas the same as normal RAM.	 */	if (memory_chunk->start_pfn >= max_pfn) {		printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",			memory_chunk->start_pfn, memory_chunk->end_pfn);		return;	}	if (memory_chunk->nid != nid)		return;	if (!node_has_online_mem(nid))		node_start_pfn[nid] = memory_chunk->start_pfn;	if (node_start_pfn[nid] > memory_chunk->start_pfn)		node_start_pfn[nid] = memory_chunk->start_pfn;	if (node_end_pfn[nid] < memory_chunk->end_pfn)		node_end_pfn[nid] = memory_chunk->end_pfn;}static u8 pxm_to_nid_map[MAX_PXM_DOMAINS];/* _PXM to logical node ID map */int pxm_to_node(int pxm){	return pxm_to_nid_map[pxm];}/* Parse the ACPI Static Resource Affinity Table */static int __init acpi20_parse_srat(struct acpi_table_srat *sratp){	u8 *start, *end, *p;	int i, j, nid;	u8 nid_to_pxm_map[MAX_NUMNODES];/* logical node ID to _PXM map */	start = (u8 *)(&(sratp->reserved) + 1);	/* skip header */	p = start;	end = (u8 *)sratp + sratp->header.length;	memset(pxm_bitmap, 0, sizeof(pxm_bitmap));	/* init proximity domain bitmap */	memset(node_memory_chunk, 0, sizeof(node_memory_chunk));	memset(zholes_size, 0, sizeof(zholes_size));	/* -1 in these maps means not available */	memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map));	memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map));	num_memory_chunks = 0;	while (p < end) {		switch (*p) {		case ACPI_SRAT_PROCESSOR_AFFINITY:			parse_cpu_affinity_structure(p);			break;		case ACPI_SRAT_MEMORY_AFFINITY:			parse_memory_affinity_structure(p);			break;		default:			printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);			break;		}		p += p[1];		if (p[1] == 0) {			printk("acpi20_parse_srat: Entry length value is zero;"				" can't parse any further!\n");			break;		}	}	if (num_memory_chunks == 0) {		printk("could not finy any ACPI SRAT memory areas.\n");		goto out_fail;	}	/* Calculate total number of nodes in system from PXM bitmap and create	 * a set of sequential node IDs starting at zero.  (ACPI doesn't seem	 * to specify the range of _PXM values.)	 */	/*	 * MCD - we no longer HAVE to number nodes sequentially.  PXM domain	 * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically	 * 32, so we will continue numbering them in this manner until MAX_NUMNODES	 * approaches MAX_PXM_DOMAINS for i386.	 */	nodes_clear(node_online_map);	for (i = 0; i < MAX_PXM_DOMAINS; i++) {		if (BMAP_TEST(pxm_bitmap, i)) {			nid = num_online_nodes();			pxm_to_nid_map[i] = nid;			nid_to_pxm_map[nid] = i;			node_set_online(nid);		}	}	BUG_ON(num_online_nodes() == 0);	/* set cnode id in memory chunk structure */	for (i = 0; i < num_memory_chunks; i++)		node_memory_chunk[i].nid = pxm_to_nid_map[node_memory_chunk[i].pxm];	printk("pxm bitmap: ");	for (i = 0; i < sizeof(pxm_bitmap); i++) {		printk("%02X ", pxm_bitmap[i]);	}	printk("\n");	printk("Number of logical nodes in system = %d\n", num_online_nodes());	printk("Number of memory chunks in system = %d\n", num_memory_chunks);	for (j = 0; j < num_memory_chunks; j++){		struct node_memory_chunk_s * chunk = &node_memory_chunk[j];		printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",		       j, chunk->nid, chunk->start_pfn, chunk->end_pfn);		node_read_chunk(chunk->nid, chunk);	} 	for_each_online_node(nid) {		unsigned long start = node_start_pfn[nid];		unsigned long end = node_end_pfn[nid];		memory_present(nid, start, end);		node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);	}	return 1;out_fail:	return 0;}int __init get_memcfg_from_srat(void){	struct acpi_table_header *header = NULL;	struct acpi_table_rsdp *rsdp = NULL;	struct acpi_table_rsdt *rsdt = NULL;	struct acpi_pointer *rsdp_address = NULL;	struct acpi_table_rsdt saved_rsdt;	int tables = 0;	int i = 0;	if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING,						rsdp_address))) {		printk("%s: System description tables not found\n",		       __FUNCTION__);		goto out_err;	}	if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {		printk("%s: assigning address to rsdp\n", __FUNCTION__);		rsdp = (struct acpi_table_rsdp *)				(u32)rsdp_address->pointer.physical;	} else {		printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);		goto out_err;	}	if (!rsdp) {		printk("%s: Didn't find ACPI root!\n", __FUNCTION__);		goto out_err;	}	printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,		rsdp->oem_id);	if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {		printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);		goto out_err;	}	rsdt = (struct acpi_table_rsdt *)	    boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));	if (!rsdt) {		printk(KERN_WARNING		       "%s: ACPI: Invalid root system description tables (RSDT)\n",		       __FUNCTION__);		goto out_err;	}	header = & rsdt->header;	if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {		printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");		goto out_err;	}	/* 	 * The number of tables is computed by taking the 	 * size of all entries (header size minus total 	 * size of RSDT) divided by the size of each entry	 * (4-byte table pointers).	 */	tables = (header->length - sizeof(struct acpi_table_header)) / 4;	if (!tables)		goto out_err;	memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));	if (saved_rsdt.header.length > sizeof(saved_rsdt)) {		printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",		       saved_rsdt.header.length);		goto out_err;	}	printk("Begin SRAT table scan....\n");	for (i = 0; i < tables; i++) {		/* Map in header, then map in full table length. */		header = (struct acpi_table_header *)			boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));		if (!header)			break;		header = (struct acpi_table_header *)			boot_ioremap(saved_rsdt.entry[i], header->length);		if (!header)			break;		if (strncmp((char *) &header->signature, "SRAT", 4))			continue;		/* we've found the srat table. don't need to look at any more tables */		return acpi20_parse_srat((struct acpi_table_srat *)header);	}out_err:	printk("failed to get NUMA memory information from SRAT table\n");	return 0;}/* For each node run the memory list to determine whether there are * any memory holes.  For each hole determine which ZONE they fall * into. * * NOTE#1: this requires knowledge of the zone boundries and so * _cannot_ be performed before those are calculated in setup_memory. *  * NOTE#2: we rely on the fact that the memory chunks are ordered by * start pfn number during setup. */static void __init get_zholes_init(void){	int nid;	int c;	int first;	unsigned long end = 0;	for_each_online_node(nid) {		first = 1;		for (c = 0; c < num_memory_chunks; c++){			if (node_memory_chunk[c].nid == nid) {				if (first) {					end = node_memory_chunk[c].end_pfn;					first = 0;				} else {					/* Record any gap between this chunk					 * and the previous chunk on this node					 * against the zones it spans.					 */					chunk_to_zones(end,						node_memory_chunk[c].start_pfn,						&zholes_size[nid * MAX_NR_ZONES]);				}			}		}	}}unsigned long * __init get_zholes_size(int nid){	if (!zholes_size_init) {		zholes_size_init++;		get_zholes_init();	}	if (nid >= MAX_NUMNODES || !node_online(nid))		printk("%s: nid = %d is invalid/offline. num_online_nodes = %d",		       __FUNCTION__, nid, num_online_nodes());	return &zholes_size[nid * MAX_NR_ZONES];}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -