⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 time.c

📁 linux-2.6.15.6
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  linux/arch/alpha/kernel/time.c * *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds * * This file contains the PC-specific time handling details: * reading the RTC at bootup, etc.. * 1994-07-02    Alan Modra *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1995-03-26    Markus Kuhn *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 *      precision CMOS clock update * 1997-09-10	Updated NTP code according to technical memorandum Jan '96 *		"A Kernel Model for Precision Timekeeping" by Dave Mills * 1997-01-09    Adrian Sun *      use interval timer if CONFIG_RTC=y * 1997-10-29    John Bowman (bowman@math.ualberta.ca) *      fixed tick loss calculation in timer_interrupt *      (round system clock to nearest tick instead of truncating) *      fixed algorithm in time_init for getting time from CMOS clock * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net) *	fixed algorithm in do_gettimeofday() for calculating the precise time *	from processor cycle counter (now taking lost_ticks into account) * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de> * 	Fixed time_init to be aware of epoches != 1900. This prevents * 	booting up in 2048 for me;) Code is stolen from rtc.c. * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com> *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM */#include <linux/config.h>#include <linux/errno.h>#include <linux/module.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/param.h>#include <linux/string.h>#include <linux/mm.h>#include <linux/delay.h>#include <linux/ioport.h>#include <linux/irq.h>#include <linux/interrupt.h>#include <linux/init.h>#include <linux/bcd.h>#include <linux/profile.h>#include <asm/uaccess.h>#include <asm/io.h>#include <asm/hwrpb.h>#include <asm/8253pit.h>#include <linux/mc146818rtc.h>#include <linux/time.h>#include <linux/timex.h>#include "proto.h"#include "irq_impl.h"extern unsigned long wall_jiffies;	/* kernel/timer.c */static int set_rtc_mmss(unsigned long);DEFINE_SPINLOCK(rtc_lock);#define TICK_SIZE (tick_nsec / 1000)/* * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting * by 48 gives us 16 bits for HZ while keeping the accuracy good even * for large CPU clock rates. */#define FIX_SHIFT	48/* lump static variables together for more efficient access: */static struct {	/* cycle counter last time it got invoked */	__u32 last_time;	/* ticks/cycle * 2^48 */	unsigned long scaled_ticks_per_cycle;	/* last time the CMOS clock got updated */	time_t last_rtc_update;	/* partial unused tick */	unsigned long partial_tick;} state;unsigned long est_cycle_freq;static inline __u32 rpcc(void){    __u32 result;    asm volatile ("rpcc %0" : "=r"(result));    return result;}/* * Scheduler clock - returns current time in nanosec units. * * Copied from ARM code for expediency... ;-} */unsigned long long sched_clock(void){        return (unsigned long long)jiffies * (1000000000 / HZ);}/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs){	unsigned long delta;	__u32 now;	long nticks;#ifndef CONFIG_SMP	/* Not SMP, do kernel PC profiling here.  */	profile_tick(CPU_PROFILING, regs);#endif	write_seqlock(&xtime_lock);	/*	 * Calculate how many ticks have passed since the last update,	 * including any previous partial leftover.  Save any resulting	 * fraction for the next pass.	 */	now = rpcc();	delta = now - state.last_time;	state.last_time = now;	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 	nticks = delta >> FIX_SHIFT;	while (nticks > 0) {		do_timer(regs);#ifndef CONFIG_SMP		update_process_times(user_mode(regs));#endif		nticks--;	}	/*	 * If we have an externally synchronized Linux clock, then update	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be	 * called as close as possible to 500 ms before the new second starts.	 */	if (ntp_synced()	    && xtime.tv_sec > state.last_rtc_update + 660	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {		int tmp = set_rtc_mmss(xtime.tv_sec);		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);	}	write_sequnlock(&xtime_lock);	return IRQ_HANDLED;}voidcommon_init_rtc(void){	unsigned char x;	/* Reset periodic interrupt frequency.  */	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;        /* Test includes known working values on various platforms           where 0x26 is wrong; we refuse to change those. */	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);		CMOS_WRITE(0x26, RTC_FREQ_SELECT);	}	/* Turn on periodic interrupts.  */	x = CMOS_READ(RTC_CONTROL);	if (!(x & RTC_PIE)) {		printk("Turning on RTC interrupts.\n");		x |= RTC_PIE;		x &= ~(RTC_AIE | RTC_UIE);		CMOS_WRITE(x, RTC_CONTROL);	}	(void) CMOS_READ(RTC_INTR_FLAGS);	outb(0x36, 0x43);	/* pit counter 0: system timer */	outb(0x00, 0x40);	outb(0x00, 0x40);	outb(0xb6, 0x43);	/* pit counter 2: speaker */	outb(0x31, 0x42);	outb(0x13, 0x42);	init_rtc_irq();}/* Validate a computed cycle counter result against the known bounds for   the given processor core.  There's too much brokenness in the way of   timing hardware for any one method to work everywhere.  :-(   Return 0 if the result cannot be trusted, otherwise return the argument.  */static unsigned long __initvalidate_cc_value(unsigned long cc){	static struct bounds {		unsigned int min, max;	} cpu_hz[] __initdata = {		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */		[EV4_CPU]    = {  100000000,  300000000 },		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */		[EV45_CPU]   = {  200000000,  300000000 },		[EV5_CPU]    = {  250000000,  433000000 },		[EV56_CPU]   = {  333000000,  667000000 },		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */		[EV6_CPU]    = {  466000000,  600000000 },		[EV67_CPU]   = {  600000000,  750000000 },		[EV68AL_CPU] = {  750000000,  940000000 },		[EV68CB_CPU] = { 1000000000, 1333333333 },		/* None of the following are shipping as of 2001-11-01.  */		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */	};	/* Allow for some drift in the crystal.  10MHz is more than enough.  */	const unsigned int deviation = 10000000;	struct percpu_struct *cpu;	unsigned int index;	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);	index = cpu->type & 0xffffffff;	/* If index out of bounds, no way to validate.  */	if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0]))		return cc;	/* If index contains no data, no way to validate.  */	if (cpu_hz[index].max == 0)		return cc;	if (cc < cpu_hz[index].min - deviation	    || cc > cpu_hz[index].max + deviation)		return 0;	return cc;}/* * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from * arch/i386/time.c. */#define CALIBRATE_LATCH	0xffff#define TIMEOUT_COUNT	0x100000static unsigned long __initcalibrate_cc_with_pit(void){	int cc, count = 0;	/* Set the Gate high, disable speaker */	outb((inb(0x61) & ~0x02) | 0x01, 0x61);	/*	 * Now let's take care of CTC channel 2	 *	 * Set the Gate high, program CTC channel 2 for mode 0,	 * (interrupt on terminal count mode), binary count,	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.	 */	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */	cc = rpcc();	do {		count++;	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);	cc = rpcc() - cc;	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */	if (count <= 1 || count == TIMEOUT_COUNT)		return 0;	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);}/* The Linux interpretation of the CMOS clock register contents:   When the Update-In-Progress (UIP) flag goes from 1 to 0, the

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -