⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pci.c

📁 linux-2.6.15.6
💻 C
📖 第 1 页 / 共 2 页
字号:
					      Bus, SubBus, AgentId, HvRc);				continue;			}			HvRc = HvCallPci_configLoad16(Bus, SubBus, AgentId,						      PCI_VENDOR_ID, &VendorId);			if (HvRc != 0) {				pci_Log_Error("Read Vendor",					      Bus, SubBus, AgentId, HvRc);				continue;			}			printk("read vendor ID: %x\n", VendorId);			/* FoundDevice: 0x18.28.10 = 0x12AE */			HvRc = HvCallPci_configStore8(Bus, SubBus, AgentId,						      PCI_INTERRUPT_LINE, Irq);			if (HvRc != 0)				pci_Log_Error("PciCfgStore Irq Failed!",					      Bus, SubBus, AgentId, HvRc);			++DeviceCount;			node = build_device_node(Bus, SubBus, EADsIdSel, Function);			PCI_DN(node)->Irq = Irq;			PCI_DN(node)->LogicalSlot = BridgeInfo->logicalSlotNumber;		} /* for (Function = 0; Function < 8; ++Function) */	} /* for (IdSel = 1; IdSel <= MaxAgents; ++IdSel) */	return HvRc;}/* * I/0 Memory copy MUST use mmio commands on iSeries * To do; For performance, include the hv call directly */void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count){	u8 ByteValue = c;	long NumberOfBytes = Count;	while (NumberOfBytes > 0) {		iSeries_Write_Byte(ByteValue, dest++);		-- NumberOfBytes;	}}EXPORT_SYMBOL(iSeries_memset_io);void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count){	char *src = source;	long NumberOfBytes = count;	while (NumberOfBytes > 0) {		iSeries_Write_Byte(*src++, dest++);		-- NumberOfBytes;	}}EXPORT_SYMBOL(iSeries_memcpy_toio);void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count){	char *dst = dest;	long NumberOfBytes = count;	while (NumberOfBytes > 0) {		*dst++ = iSeries_Read_Byte(src++);		-- NumberOfBytes;	}}EXPORT_SYMBOL(iSeries_memcpy_fromio);/* * Look down the chain to find the matching Device Device */static struct device_node *find_Device_Node(int bus, int devfn){	struct pci_dn *pdn;	list_for_each_entry(pdn, &iSeries_Global_Device_List, Device_List) {		if ((bus == pdn->busno) && (devfn == pdn->devfn))			return pdn->node;	}	return NULL;}#if 0/* * Returns the device node for the passed pci_dev * Sanity Check Node PciDev to passed pci_dev * If none is found, returns a NULL which the client must handle. */static struct device_node *get_Device_Node(struct pci_dev *pdev){	struct device_node *node;	node = pdev->sysdata;	if (node == NULL || PCI_DN(node)->pcidev != pdev)		node = find_Device_Node(pdev->bus->number, pdev->devfn);	return node;}#endif/* * Config space read and write functions. * For now at least, we look for the device node for the bus and devfn * that we are asked to access.  It may be possible to translate the devfn * to a subbus and deviceid more directly. */static u64 hv_cfg_read_func[4]  = {	HvCallPciConfigLoad8, HvCallPciConfigLoad16,	HvCallPciConfigLoad32, HvCallPciConfigLoad32};static u64 hv_cfg_write_func[4] = {	HvCallPciConfigStore8, HvCallPciConfigStore16,	HvCallPciConfigStore32, HvCallPciConfigStore32};/* * Read PCI config space */static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,		int offset, int size, u32 *val){	struct device_node *node = find_Device_Node(bus->number, devfn);	u64 fn;	struct HvCallPci_LoadReturn ret;	if (node == NULL)		return PCIBIOS_DEVICE_NOT_FOUND;	if (offset > 255) {		*val = ~0;		return PCIBIOS_BAD_REGISTER_NUMBER;	}	fn = hv_cfg_read_func[(size - 1) & 3];	HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);	if (ret.rc != 0) {		*val = ~0;		return PCIBIOS_DEVICE_NOT_FOUND;	/* or something */	}	*val = ret.value;	return 0;}/* * Write PCI config space */static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,		int offset, int size, u32 val){	struct device_node *node = find_Device_Node(bus->number, devfn);	u64 fn;	u64 ret;	if (node == NULL)		return PCIBIOS_DEVICE_NOT_FOUND;	if (offset > 255)		return PCIBIOS_BAD_REGISTER_NUMBER;	fn = hv_cfg_write_func[(size - 1) & 3];	ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);	if (ret != 0)		return PCIBIOS_DEVICE_NOT_FOUND;	return 0;}static struct pci_ops iSeries_pci_ops = {	.read = iSeries_pci_read_config,	.write = iSeries_pci_write_config};/* * Check Return Code * -> On Failure, print and log information. *    Increment Retry Count, if exceeds max, panic partition. * * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234 * PCI: Device 23.90 ReadL Retry( 1) * PCI: Device 23.90 ReadL Retry Successful(1) */static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,		int *retry, u64 ret){	if (ret != 0)  {		struct pci_dn *pdn = PCI_DN(DevNode);		++Pci_Error_Count;		(*retry)++;		printk("PCI: %s: Device 0x%04X:%02X  I/O Error(%2d): 0x%04X\n",				TextHdr, pdn->busno, pdn->devfn,				*retry, (int)ret);		/*		 * Bump the retry and check for retry count exceeded.		 * If, Exceeded, panic the system.		 */		if (((*retry) > Pci_Retry_Max) &&				(Pci_Error_Flag > 0)) {			mf_display_src(0xB6000103);			panic_timeout = 0;			panic("PCI: Hardware I/O Error, SRC B6000103, "					"Automatic Reboot Disabled.\n");		}		return -1;	/* Retry Try */	}	return 0;}/* * Translate the I/O Address into a device node, bar, and bar offset. * Note: Make sure the passed variable end up on the stack to avoid * the exposure of being device global. */static inline struct device_node *xlate_iomm_address(		const volatile void __iomem *IoAddress,		u64 *dsaptr, u64 *BarOffsetPtr){	unsigned long OrigIoAddr;	unsigned long BaseIoAddr;	unsigned long TableIndex;	struct device_node *DevNode;	OrigIoAddr = (unsigned long __force)IoAddress;	if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))		return NULL;	BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;	TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;	DevNode = iomm_table[TableIndex];	if (DevNode != NULL) {		int barnum = iobar_table[TableIndex];		*dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);		*BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;	} else		panic("PCI: Invalid PCI IoAddress detected!\n");	return DevNode;}/* * Read MM I/O Instructions for the iSeries * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal * else, data is returned in big Endian format. * * iSeries_Read_Byte = Read Byte  ( 8 bit) * iSeries_Read_Word = Read Word  (16 bit) * iSeries_Read_Long = Read Long  (32 bit) */u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress){	u64 BarOffset;	u64 dsa;	int retry = 0;	struct HvCallPci_LoadReturn ret;	struct device_node *DevNode =		xlate_iomm_address(IoAddress, &dsa, &BarOffset);	if (DevNode == NULL) {		static unsigned long last_jiffies;		static int num_printed;		if ((jiffies - last_jiffies) > 60 * HZ) {			last_jiffies = jiffies;			num_printed = 0;		}		if (num_printed++ < 10)			printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);		return 0xff;	}	do {		++Pci_Io_Read_Count;		HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);	} while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);	return (u8)ret.value;}EXPORT_SYMBOL(iSeries_Read_Byte);u16 iSeries_Read_Word(const volatile void __iomem *IoAddress){	u64 BarOffset;	u64 dsa;	int retry = 0;	struct HvCallPci_LoadReturn ret;	struct device_node *DevNode =		xlate_iomm_address(IoAddress, &dsa, &BarOffset);	if (DevNode == NULL) {		static unsigned long last_jiffies;		static int num_printed;		if ((jiffies - last_jiffies) > 60 * HZ) {			last_jiffies = jiffies;			num_printed = 0;		}		if (num_printed++ < 10)			printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);		return 0xffff;	}	do {		++Pci_Io_Read_Count;		HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,				BarOffset, 0);	} while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);	return swab16((u16)ret.value);}EXPORT_SYMBOL(iSeries_Read_Word);u32 iSeries_Read_Long(const volatile void __iomem *IoAddress){	u64 BarOffset;	u64 dsa;	int retry = 0;	struct HvCallPci_LoadReturn ret;	struct device_node *DevNode =		xlate_iomm_address(IoAddress, &dsa, &BarOffset);	if (DevNode == NULL) {		static unsigned long last_jiffies;		static int num_printed;		if ((jiffies - last_jiffies) > 60 * HZ) {			last_jiffies = jiffies;			num_printed = 0;		}		if (num_printed++ < 10)			printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);		return 0xffffffff;	}	do {		++Pci_Io_Read_Count;		HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,				BarOffset, 0);	} while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);	return swab32((u32)ret.value);}EXPORT_SYMBOL(iSeries_Read_Long);/* * Write MM I/O Instructions for the iSeries * * iSeries_Write_Byte = Write Byte (8 bit) * iSeries_Write_Word = Write Word(16 bit) * iSeries_Write_Long = Write Long(32 bit) */void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress){	u64 BarOffset;	u64 dsa;	int retry = 0;	u64 rc;	struct device_node *DevNode =		xlate_iomm_address(IoAddress, &dsa, &BarOffset);	if (DevNode == NULL) {		static unsigned long last_jiffies;		static int num_printed;		if ((jiffies - last_jiffies) > 60 * HZ) {			last_jiffies = jiffies;			num_printed = 0;		}		if (num_printed++ < 10)			printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);		return;	}	do {		++Pci_Io_Write_Count;		rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);	} while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);}EXPORT_SYMBOL(iSeries_Write_Byte);void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress){	u64 BarOffset;	u64 dsa;	int retry = 0;	u64 rc;	struct device_node *DevNode =		xlate_iomm_address(IoAddress, &dsa, &BarOffset);	if (DevNode == NULL) {		static unsigned long last_jiffies;		static int num_printed;		if ((jiffies - last_jiffies) > 60 * HZ) {			last_jiffies = jiffies;			num_printed = 0;		}		if (num_printed++ < 10)			printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);		return;	}	do {		++Pci_Io_Write_Count;		rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);	} while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);}EXPORT_SYMBOL(iSeries_Write_Word);void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress){	u64 BarOffset;	u64 dsa;	int retry = 0;	u64 rc;	struct device_node *DevNode =		xlate_iomm_address(IoAddress, &dsa, &BarOffset);	if (DevNode == NULL) {		static unsigned long last_jiffies;		static int num_printed;		if ((jiffies - last_jiffies) > 60 * HZ) {			last_jiffies = jiffies;			num_printed = 0;		}		if (num_printed++ < 10)			printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);		return;	}	do {		++Pci_Io_Write_Count;		rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);	} while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);}EXPORT_SYMBOL(iSeries_Write_Long);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -