⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eeh.c

📁 linux-2.6.15.6
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * eeh.c * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA */#include <linux/delay.h>#include <linux/init.h>#include <linux/list.h>#include <linux/pci.h>#include <linux/proc_fs.h>#include <linux/rbtree.h>#include <linux/seq_file.h>#include <linux/spinlock.h>#include <asm/atomic.h>#include <asm/eeh.h>#include <asm/eeh_event.h>#include <asm/io.h>#include <asm/machdep.h>#include <asm/ppc-pci.h>#include <asm/rtas.h>#undef DEBUG/** Overview: *  EEH, or "Extended Error Handling" is a PCI bridge technology for *  dealing with PCI bus errors that can't be dealt with within the *  usual PCI framework, except by check-stopping the CPU.  Systems *  that are designed for high-availability/reliability cannot afford *  to crash due to a "mere" PCI error, thus the need for EEH. *  An EEH-capable bridge operates by converting a detected error *  into a "slot freeze", taking the PCI adapter off-line, making *  the slot behave, from the OS'es point of view, as if the slot *  were "empty": all reads return 0xff's and all writes are silently *  ignored.  EEH slot isolation events can be triggered by parity *  errors on the address or data busses (e.g. during posted writes), *  which in turn might be caused by low voltage on the bus, dust, *  vibration, humidity, radioactivity or plain-old failed hardware. * *  Note, however, that one of the leading causes of EEH slot *  freeze events are buggy device drivers, buggy device microcode, *  or buggy device hardware.  This is because any attempt by the *  device to bus-master data to a memory address that is not *  assigned to the device will trigger a slot freeze.   (The idea *  is to prevent devices-gone-wild from corrupting system memory). *  Buggy hardware/drivers will have a miserable time co-existing *  with EEH. * *  Ideally, a PCI device driver, when suspecting that an isolation *  event has occured (e.g. by reading 0xff's), will then ask EEH *  whether this is the case, and then take appropriate steps to *  reset the PCI slot, the PCI device, and then resume operations. *  However, until that day,  the checking is done here, with the *  eeh_check_failure() routine embedded in the MMIO macros.  If *  the slot is found to be isolated, an "EEH Event" is synthesized *  and sent out for processing. *//* If a device driver keeps reading an MMIO register in an interrupt * handler after a slot isolation event has occurred, we assume it * is broken and panic.  This sets the threshold for how many read * attempts we allow before panicking. */#define EEH_MAX_FAILS	100000/* Misc forward declaraions */static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);/* RTAS tokens */static int ibm_set_eeh_option;static int ibm_set_slot_reset;static int ibm_read_slot_reset_state;static int ibm_read_slot_reset_state2;static int ibm_slot_error_detail;int eeh_subsystem_enabled;EXPORT_SYMBOL(eeh_subsystem_enabled);/* Lock to avoid races due to multiple reports of an error */static DEFINE_SPINLOCK(confirm_error_lock);/* Buffer for reporting slot-error-detail rtas calls */static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];static DEFINE_SPINLOCK(slot_errbuf_lock);static int eeh_error_buf_size;/* System monitoring statistics */static DEFINE_PER_CPU(unsigned long, no_device);static DEFINE_PER_CPU(unsigned long, no_dn);static DEFINE_PER_CPU(unsigned long, no_cfg_addr);static DEFINE_PER_CPU(unsigned long, ignored_check);static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);static DEFINE_PER_CPU(unsigned long, false_positives);static DEFINE_PER_CPU(unsigned long, ignored_failures);static DEFINE_PER_CPU(unsigned long, slot_resets);/** * The pci address cache subsystem.  This subsystem places * PCI device address resources into a red-black tree, sorted * according to the address range, so that given only an i/o * address, the corresponding PCI device can be **quickly** * found. It is safe to perform an address lookup in an interrupt * context; this ability is an important feature. * * Currently, the only customer of this code is the EEH subsystem; * thus, this code has been somewhat tailored to suit EEH better. * In particular, the cache does *not* hold the addresses of devices * for which EEH is not enabled. * * (Implementation Note: The RB tree seems to be better/faster * than any hash algo I could think of for this problem, even * with the penalty of slow pointer chases for d-cache misses). */struct pci_io_addr_range{	struct rb_node rb_node;	unsigned long addr_lo;	unsigned long addr_hi;	struct pci_dev *pcidev;	unsigned int flags;};static struct pci_io_addr_cache{	struct rb_root rb_root;	spinlock_t piar_lock;} pci_io_addr_cache_root;static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr){	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;	while (n) {		struct pci_io_addr_range *piar;		piar = rb_entry(n, struct pci_io_addr_range, rb_node);		if (addr < piar->addr_lo) {			n = n->rb_left;		} else {			if (addr > piar->addr_hi) {				n = n->rb_right;			} else {				pci_dev_get(piar->pcidev);				return piar->pcidev;			}		}	}	return NULL;}/** * pci_get_device_by_addr - Get device, given only address * @addr: mmio (PIO) phys address or i/o port number * * Given an mmio phys address, or a port number, find a pci device * that implements this address.  Be sure to pci_dev_put the device * when finished.  I/O port numbers are assumed to be offset * from zero (that is, they do *not* have pci_io_addr added in). * It is safe to call this function within an interrupt. */static struct pci_dev *pci_get_device_by_addr(unsigned long addr){	struct pci_dev *dev;	unsigned long flags;	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);	dev = __pci_get_device_by_addr(addr);	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);	return dev;}#ifdef DEBUG/* * Handy-dandy debug print routine, does nothing more * than print out the contents of our addr cache. */static void pci_addr_cache_print(struct pci_io_addr_cache *cache){	struct rb_node *n;	int cnt = 0;	n = rb_first(&cache->rb_root);	while (n) {		struct pci_io_addr_range *piar;		piar = rb_entry(n, struct pci_io_addr_range, rb_node);		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));		cnt++;		n = rb_next(n);	}}#endif/* Insert address range into the rb tree. */static struct pci_io_addr_range *pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,		      unsigned long ahi, unsigned int flags){	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;	struct rb_node *parent = NULL;	struct pci_io_addr_range *piar;	/* Walk tree, find a place to insert into tree */	while (*p) {		parent = *p;		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);		if (ahi < piar->addr_lo) {			p = &parent->rb_left;		} else if (alo > piar->addr_hi) {			p = &parent->rb_right;		} else {			if (dev != piar->pcidev ||			    alo != piar->addr_lo || ahi != piar->addr_hi) {				printk(KERN_WARNING "PIAR: overlapping address range\n");			}			return piar;		}	}	piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);	if (!piar)		return NULL;	piar->addr_lo = alo;	piar->addr_hi = ahi;	piar->pcidev = dev;	piar->flags = flags;#ifdef DEBUG	printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",	                  alo, ahi, pci_name (dev));#endif	rb_link_node(&piar->rb_node, parent, p);	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);	return piar;}static void __pci_addr_cache_insert_device(struct pci_dev *dev){	struct device_node *dn;	struct pci_dn *pdn;	int i;	int inserted = 0;	dn = pci_device_to_OF_node(dev);	if (!dn) {		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));		return;	}	/* Skip any devices for which EEH is not enabled. */	pdn = PCI_DN(dn);	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||	    pdn->eeh_mode & EEH_MODE_NOCHECK) {#ifdef DEBUG		printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",		       pci_name(dev), pdn->node->full_name);#endif		return;	}	/* The cache holds a reference to the device... */	pci_dev_get(dev);	/* Walk resources on this device, poke them into the tree */	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {		unsigned long start = pci_resource_start(dev,i);		unsigned long end = pci_resource_end(dev,i);		unsigned int flags = pci_resource_flags(dev,i);		/* We are interested only bus addresses, not dma or other stuff */		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))			continue;		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)			 continue;		pci_addr_cache_insert(dev, start, end, flags);		inserted = 1;	}	/* If there was nothing to add, the cache has no reference... */	if (!inserted)		pci_dev_put(dev);}/** * pci_addr_cache_insert_device - Add a device to the address cache * @dev: PCI device whose I/O addresses we are interested in. * * In order to support the fast lookup of devices based on addresses, * we maintain a cache of devices that can be quickly searched. * This routine adds a device to that cache. */static void pci_addr_cache_insert_device(struct pci_dev *dev){	unsigned long flags;	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);	__pci_addr_cache_insert_device(dev);	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);}static inline void __pci_addr_cache_remove_device(struct pci_dev *dev){	struct rb_node *n;	int removed = 0;restart:	n = rb_first(&pci_io_addr_cache_root.rb_root);	while (n) {		struct pci_io_addr_range *piar;		piar = rb_entry(n, struct pci_io_addr_range, rb_node);		if (piar->pcidev == dev) {			rb_erase(n, &pci_io_addr_cache_root.rb_root);			removed = 1;			kfree(piar);			goto restart;		}		n = rb_next(n);	}	/* The cache no longer holds its reference to this device... */	if (removed)		pci_dev_put(dev);}/** * pci_addr_cache_remove_device - remove pci device from addr cache * @dev: device to remove * * Remove a device from the addr-cache tree. * This is potentially expensive, since it will walk * the tree multiple times (once per resource). * But so what; device removal doesn't need to be that fast. */static void pci_addr_cache_remove_device(struct pci_dev *dev){	unsigned long flags;	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);	__pci_addr_cache_remove_device(dev);	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);}/** * pci_addr_cache_build - Build a cache of I/O addresses * * Build a cache of pci i/o addresses.  This cache will be used to * find the pci device that corresponds to a given address. * This routine scans all pci busses to build the cache. * Must be run late in boot process, after the pci controllers * have been scaned for devices (after all device resources are known). */void __init pci_addr_cache_build(void){	struct device_node *dn;	struct pci_dev *dev = NULL;	if (!eeh_subsystem_enabled)		return;	spin_lock_init(&pci_io_addr_cache_root.piar_lock);	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {		/* Ignore PCI bridges ( XXX why ??) */		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {			continue;		}		pci_addr_cache_insert_device(dev);		/* Save the BAR's; firmware doesn't restore these after EEH reset */		dn = pci_device_to_OF_node(dev);		eeh_save_bars(dev, PCI_DN(dn));	}#ifdef DEBUG	/* Verify tree built up above, echo back the list of addrs. */	pci_addr_cache_print(&pci_io_addr_cache_root);#endif}/* --------------------------------------------------------------- *//* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */void eeh_slot_error_detail (struct pci_dn *pdn, int severity){	unsigned long flags;	int rc;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -