📄 eeh.c
字号:
/* * eeh.c * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */#include <linux/delay.h>#include <linux/init.h>#include <linux/list.h>#include <linux/pci.h>#include <linux/proc_fs.h>#include <linux/rbtree.h>#include <linux/seq_file.h>#include <linux/spinlock.h>#include <asm/atomic.h>#include <asm/eeh.h>#include <asm/eeh_event.h>#include <asm/io.h>#include <asm/machdep.h>#include <asm/ppc-pci.h>#include <asm/rtas.h>#undef DEBUG/** Overview: * EEH, or "Extended Error Handling" is a PCI bridge technology for * dealing with PCI bus errors that can't be dealt with within the * usual PCI framework, except by check-stopping the CPU. Systems * that are designed for high-availability/reliability cannot afford * to crash due to a "mere" PCI error, thus the need for EEH. * An EEH-capable bridge operates by converting a detected error * into a "slot freeze", taking the PCI adapter off-line, making * the slot behave, from the OS'es point of view, as if the slot * were "empty": all reads return 0xff's and all writes are silently * ignored. EEH slot isolation events can be triggered by parity * errors on the address or data busses (e.g. during posted writes), * which in turn might be caused by low voltage on the bus, dust, * vibration, humidity, radioactivity or plain-old failed hardware. * * Note, however, that one of the leading causes of EEH slot * freeze events are buggy device drivers, buggy device microcode, * or buggy device hardware. This is because any attempt by the * device to bus-master data to a memory address that is not * assigned to the device will trigger a slot freeze. (The idea * is to prevent devices-gone-wild from corrupting system memory). * Buggy hardware/drivers will have a miserable time co-existing * with EEH. * * Ideally, a PCI device driver, when suspecting that an isolation * event has occured (e.g. by reading 0xff's), will then ask EEH * whether this is the case, and then take appropriate steps to * reset the PCI slot, the PCI device, and then resume operations. * However, until that day, the checking is done here, with the * eeh_check_failure() routine embedded in the MMIO macros. If * the slot is found to be isolated, an "EEH Event" is synthesized * and sent out for processing. *//* If a device driver keeps reading an MMIO register in an interrupt * handler after a slot isolation event has occurred, we assume it * is broken and panic. This sets the threshold for how many read * attempts we allow before panicking. */#define EEH_MAX_FAILS 100000/* Misc forward declaraions */static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);/* RTAS tokens */static int ibm_set_eeh_option;static int ibm_set_slot_reset;static int ibm_read_slot_reset_state;static int ibm_read_slot_reset_state2;static int ibm_slot_error_detail;int eeh_subsystem_enabled;EXPORT_SYMBOL(eeh_subsystem_enabled);/* Lock to avoid races due to multiple reports of an error */static DEFINE_SPINLOCK(confirm_error_lock);/* Buffer for reporting slot-error-detail rtas calls */static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];static DEFINE_SPINLOCK(slot_errbuf_lock);static int eeh_error_buf_size;/* System monitoring statistics */static DEFINE_PER_CPU(unsigned long, no_device);static DEFINE_PER_CPU(unsigned long, no_dn);static DEFINE_PER_CPU(unsigned long, no_cfg_addr);static DEFINE_PER_CPU(unsigned long, ignored_check);static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);static DEFINE_PER_CPU(unsigned long, false_positives);static DEFINE_PER_CPU(unsigned long, ignored_failures);static DEFINE_PER_CPU(unsigned long, slot_resets);/** * The pci address cache subsystem. This subsystem places * PCI device address resources into a red-black tree, sorted * according to the address range, so that given only an i/o * address, the corresponding PCI device can be **quickly** * found. It is safe to perform an address lookup in an interrupt * context; this ability is an important feature. * * Currently, the only customer of this code is the EEH subsystem; * thus, this code has been somewhat tailored to suit EEH better. * In particular, the cache does *not* hold the addresses of devices * for which EEH is not enabled. * * (Implementation Note: The RB tree seems to be better/faster * than any hash algo I could think of for this problem, even * with the penalty of slow pointer chases for d-cache misses). */struct pci_io_addr_range{ struct rb_node rb_node; unsigned long addr_lo; unsigned long addr_hi; struct pci_dev *pcidev; unsigned int flags;};static struct pci_io_addr_cache{ struct rb_root rb_root; spinlock_t piar_lock;} pci_io_addr_cache_root;static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr){ struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; while (n) { struct pci_io_addr_range *piar; piar = rb_entry(n, struct pci_io_addr_range, rb_node); if (addr < piar->addr_lo) { n = n->rb_left; } else { if (addr > piar->addr_hi) { n = n->rb_right; } else { pci_dev_get(piar->pcidev); return piar->pcidev; } } } return NULL;}/** * pci_get_device_by_addr - Get device, given only address * @addr: mmio (PIO) phys address or i/o port number * * Given an mmio phys address, or a port number, find a pci device * that implements this address. Be sure to pci_dev_put the device * when finished. I/O port numbers are assumed to be offset * from zero (that is, they do *not* have pci_io_addr added in). * It is safe to call this function within an interrupt. */static struct pci_dev *pci_get_device_by_addr(unsigned long addr){ struct pci_dev *dev; unsigned long flags; spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); dev = __pci_get_device_by_addr(addr); spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); return dev;}#ifdef DEBUG/* * Handy-dandy debug print routine, does nothing more * than print out the contents of our addr cache. */static void pci_addr_cache_print(struct pci_io_addr_cache *cache){ struct rb_node *n; int cnt = 0; n = rb_first(&cache->rb_root); while (n) { struct pci_io_addr_range *piar; piar = rb_entry(n, struct pci_io_addr_range, rb_node); printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n", (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev)); cnt++; n = rb_next(n); }}#endif/* Insert address range into the rb tree. */static struct pci_io_addr_range *pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo, unsigned long ahi, unsigned int flags){ struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; struct rb_node *parent = NULL; struct pci_io_addr_range *piar; /* Walk tree, find a place to insert into tree */ while (*p) { parent = *p; piar = rb_entry(parent, struct pci_io_addr_range, rb_node); if (ahi < piar->addr_lo) { p = &parent->rb_left; } else if (alo > piar->addr_hi) { p = &parent->rb_right; } else { if (dev != piar->pcidev || alo != piar->addr_lo || ahi != piar->addr_hi) { printk(KERN_WARNING "PIAR: overlapping address range\n"); } return piar; } } piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); if (!piar) return NULL; piar->addr_lo = alo; piar->addr_hi = ahi; piar->pcidev = dev; piar->flags = flags;#ifdef DEBUG printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n", alo, ahi, pci_name (dev));#endif rb_link_node(&piar->rb_node, parent, p); rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); return piar;}static void __pci_addr_cache_insert_device(struct pci_dev *dev){ struct device_node *dn; struct pci_dn *pdn; int i; int inserted = 0; dn = pci_device_to_OF_node(dev); if (!dn) { printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev)); return; } /* Skip any devices for which EEH is not enabled. */ pdn = PCI_DN(dn); if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) || pdn->eeh_mode & EEH_MODE_NOCHECK) {#ifdef DEBUG printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n", pci_name(dev), pdn->node->full_name);#endif return; } /* The cache holds a reference to the device... */ pci_dev_get(dev); /* Walk resources on this device, poke them into the tree */ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { unsigned long start = pci_resource_start(dev,i); unsigned long end = pci_resource_end(dev,i); unsigned int flags = pci_resource_flags(dev,i); /* We are interested only bus addresses, not dma or other stuff */ if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) continue; if (start == 0 || ~start == 0 || end == 0 || ~end == 0) continue; pci_addr_cache_insert(dev, start, end, flags); inserted = 1; } /* If there was nothing to add, the cache has no reference... */ if (!inserted) pci_dev_put(dev);}/** * pci_addr_cache_insert_device - Add a device to the address cache * @dev: PCI device whose I/O addresses we are interested in. * * In order to support the fast lookup of devices based on addresses, * we maintain a cache of devices that can be quickly searched. * This routine adds a device to that cache. */static void pci_addr_cache_insert_device(struct pci_dev *dev){ unsigned long flags; spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); __pci_addr_cache_insert_device(dev); spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);}static inline void __pci_addr_cache_remove_device(struct pci_dev *dev){ struct rb_node *n; int removed = 0;restart: n = rb_first(&pci_io_addr_cache_root.rb_root); while (n) { struct pci_io_addr_range *piar; piar = rb_entry(n, struct pci_io_addr_range, rb_node); if (piar->pcidev == dev) { rb_erase(n, &pci_io_addr_cache_root.rb_root); removed = 1; kfree(piar); goto restart; } n = rb_next(n); } /* The cache no longer holds its reference to this device... */ if (removed) pci_dev_put(dev);}/** * pci_addr_cache_remove_device - remove pci device from addr cache * @dev: device to remove * * Remove a device from the addr-cache tree. * This is potentially expensive, since it will walk * the tree multiple times (once per resource). * But so what; device removal doesn't need to be that fast. */static void pci_addr_cache_remove_device(struct pci_dev *dev){ unsigned long flags; spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); __pci_addr_cache_remove_device(dev); spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);}/** * pci_addr_cache_build - Build a cache of I/O addresses * * Build a cache of pci i/o addresses. This cache will be used to * find the pci device that corresponds to a given address. * This routine scans all pci busses to build the cache. * Must be run late in boot process, after the pci controllers * have been scaned for devices (after all device resources are known). */void __init pci_addr_cache_build(void){ struct device_node *dn; struct pci_dev *dev = NULL; if (!eeh_subsystem_enabled) return; spin_lock_init(&pci_io_addr_cache_root.piar_lock); while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { /* Ignore PCI bridges ( XXX why ??) */ if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) { continue; } pci_addr_cache_insert_device(dev); /* Save the BAR's; firmware doesn't restore these after EEH reset */ dn = pci_device_to_OF_node(dev); eeh_save_bars(dev, PCI_DN(dn)); }#ifdef DEBUG /* Verify tree built up above, echo back the list of addrs. */ pci_addr_cache_print(&pci_io_addr_cache_root);#endif}/* --------------------------------------------------------------- *//* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */void eeh_slot_error_detail (struct pci_dn *pdn, int severity){ unsigned long flags; int rc;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -