⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rtasd.c

📁 linux-2.6.15.6
💻 C
字号:
/* * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Communication to userspace based on kernel/printk.c */#include <linux/types.h>#include <linux/errno.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/poll.h>#include <linux/proc_fs.h>#include <linux/init.h>#include <linux/vmalloc.h>#include <linux/spinlock.h>#include <linux/cpu.h>#include <linux/delay.h>#include <asm/uaccess.h>#include <asm/io.h>#include <asm/rtas.h>#include <asm/prom.h>#include <asm/nvram.h>#include <asm/atomic.h>#if 0#define DEBUG(A...)	printk(KERN_ERR A)#else#define DEBUG(A...)#endifstatic DEFINE_SPINLOCK(rtasd_log_lock);DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);static char *rtas_log_buf;static unsigned long rtas_log_start;static unsigned long rtas_log_size;static int surveillance_timeout = -1;static unsigned int rtas_event_scan_rate;static unsigned int rtas_error_log_max;static unsigned int rtas_error_log_buffer_max;static int full_rtas_msgs = 0;extern int no_logging;volatile int error_log_cnt = 0;/* * Since we use 32 bit RTAS, the physical address of this must be below * 4G or else bad things happen. Allocate this in the kernel data and * make it big enough. */static unsigned char logdata[RTAS_ERROR_LOG_MAX];static int get_eventscan_parms(void);static char *rtas_type[] = {	"Unknown", "Retry", "TCE Error", "Internal Device Failure",	"Timeout", "Data Parity", "Address Parity", "Cache Parity",	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",};static char *rtas_event_type(int type){	if ((type > 0) && (type < 11))		return rtas_type[type];	switch (type) {		case RTAS_TYPE_EPOW:			return "EPOW";		case RTAS_TYPE_PLATFORM:			return "Platform Error";		case RTAS_TYPE_IO:			return "I/O Event";		case RTAS_TYPE_INFO:			return "Platform Information Event";		case RTAS_TYPE_DEALLOC:			return "Resource Deallocation Event";		case RTAS_TYPE_DUMP:			return "Dump Notification Event";	}	return rtas_type[0];}/* To see this info, grep RTAS /var/log/messages and each entry * will be collected together with obvious begin/end. * There will be a unique identifier on the begin and end lines. * This will persist across reboots. * * format of error logs returned from RTAS: * bytes	(size)	: contents * -------------------------------------------------------- * 0-7		(8)	: rtas_error_log * 8-47		(40)	: extended info * 48-51	(4)	: vendor id * 52-1023 (vendor specific) : location code and debug data */static void printk_log_rtas(char *buf, int len){	int i,j,n = 0;	int perline = 16;	char buffer[64];	char * str = "RTAS event";	if (full_rtas_msgs) {		printk(RTAS_DEBUG "%d -------- %s begin --------\n",		       error_log_cnt, str);		/*		 * Print perline bytes on each line, each line will start		 * with RTAS and a changing number, so syslogd will		 * print lines that are otherwise the same.  Separate every		 * 4 bytes with a space.		 */		for (i = 0; i < len; i++) {			j = i % perline;			if (j == 0) {				memset(buffer, 0, sizeof(buffer));				n = sprintf(buffer, "RTAS %d:", i/perline);			}			if ((i % 4) == 0)				n += sprintf(buffer+n, " ");			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);			if (j == (perline-1))				printk(KERN_DEBUG "%s\n", buffer);		}		if ((i % perline) != 0)			printk(KERN_DEBUG "%s\n", buffer);		printk(RTAS_DEBUG "%d -------- %s end ----------\n",		       error_log_cnt, str);	} else {		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",		       error_log_cnt, rtas_event_type(errlog->type),		       errlog->severity);	}}static int log_rtas_len(char * buf){	int len;	struct rtas_error_log *err;	/* rtas fixed header */	len = 8;	err = (struct rtas_error_log *)buf;	if (err->extended_log_length) {		/* extended header */		len += err->extended_log_length;	}	if (rtas_error_log_max == 0) {		get_eventscan_parms();	}	if (len > rtas_error_log_max)		len = rtas_error_log_max;	return len;}/* * First write to nvram, if fatal error, that is the only * place we log the info.  The error will be picked up * on the next reboot by rtasd.  If not fatal, run the * method for the type of error.  Currently, only RTAS * errors have methods implemented, but in the future * there might be a need to store data in nvram before a * call to panic(). * * XXX We write to nvram periodically, to indicate error has * been written and sync'd, but there is a possibility * that if we don't shutdown correctly, a duplicate error * record will be created on next reboot. */void pSeries_log_error(char *buf, unsigned int err_type, int fatal){	unsigned long offset;	unsigned long s;	int len = 0;	DEBUG("logging event\n");	if (buf == NULL)		return;	spin_lock_irqsave(&rtasd_log_lock, s);	/* get length and increase count */	switch (err_type & ERR_TYPE_MASK) {	case ERR_TYPE_RTAS_LOG:		len = log_rtas_len(buf);		if (!(err_type & ERR_FLAG_BOOT))			error_log_cnt++;		break;	case ERR_TYPE_KERNEL_PANIC:	default:		spin_unlock_irqrestore(&rtasd_log_lock, s);		return;	}	/* Write error to NVRAM */	if (!no_logging && !(err_type & ERR_FLAG_BOOT))		nvram_write_error_log(buf, len, err_type);	/*	 * rtas errors can occur during boot, and we do want to capture	 * those somewhere, even if nvram isn't ready (why not?), and even	 * if rtasd isn't ready. Put them into the boot log, at least.	 */	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)		printk_log_rtas(buf, len);	/* Check to see if we need to or have stopped logging */	if (fatal || no_logging) {		no_logging = 1;		spin_unlock_irqrestore(&rtasd_log_lock, s);		return;	}	/* call type specific method for error */	switch (err_type & ERR_TYPE_MASK) {	case ERR_TYPE_RTAS_LOG:		offset = rtas_error_log_buffer_max *			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);		/* First copy over sequence number */		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));		/* Second copy over error log data */		offset += sizeof(int);		memcpy(&rtas_log_buf[offset], buf, len);		if (rtas_log_size < LOG_NUMBER)			rtas_log_size += 1;		else			rtas_log_start += 1;		spin_unlock_irqrestore(&rtasd_log_lock, s);		wake_up_interruptible(&rtas_log_wait);		break;	case ERR_TYPE_KERNEL_PANIC:	default:		spin_unlock_irqrestore(&rtasd_log_lock, s);		return;	}}static int rtas_log_open(struct inode * inode, struct file * file){	return 0;}static int rtas_log_release(struct inode * inode, struct file * file){	return 0;}/* This will check if all events are logged, if they are then, we * know that we can safely clear the events in NVRAM. * Next we'll sit and wait for something else to log. */static ssize_t rtas_log_read(struct file * file, char __user * buf,			 size_t count, loff_t *ppos){	int error;	char *tmp;	unsigned long s;	unsigned long offset;	if (!buf || count < rtas_error_log_buffer_max)		return -EINVAL;	count = rtas_error_log_buffer_max;	if (!access_ok(VERIFY_WRITE, buf, count))		return -EFAULT;	tmp = kmalloc(count, GFP_KERNEL);	if (!tmp)		return -ENOMEM;	spin_lock_irqsave(&rtasd_log_lock, s);	/* if it's 0, then we know we got the last one (the one in NVRAM) */	if (rtas_log_size == 0 && !no_logging)		nvram_clear_error_log();	spin_unlock_irqrestore(&rtasd_log_lock, s);	error = wait_event_interruptible(rtas_log_wait, rtas_log_size);	if (error)		goto out;	spin_lock_irqsave(&rtasd_log_lock, s);	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);	memcpy(tmp, &rtas_log_buf[offset], count);	rtas_log_start += 1;	rtas_log_size -= 1;	spin_unlock_irqrestore(&rtasd_log_lock, s);	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;out:	kfree(tmp);	return error;}static unsigned int rtas_log_poll(struct file *file, poll_table * wait){	poll_wait(file, &rtas_log_wait, wait);	if (rtas_log_size)		return POLLIN | POLLRDNORM;	return 0;}struct file_operations proc_rtas_log_operations = {	.read =		rtas_log_read,	.poll =		rtas_log_poll,	.open =		rtas_log_open,	.release =	rtas_log_release,};static int enable_surveillance(int timeout){	int error;	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);	if (error == 0)		return 0;	if (error == -EINVAL) {		printk(KERN_INFO "rtasd: surveillance not supported\n");		return 0;	}	printk(KERN_ERR "rtasd: could not update surveillance\n");	return -1;}static int get_eventscan_parms(void){	struct device_node *node;	int *ip;	node = of_find_node_by_path("/rtas");	ip = (int *)get_property(node, "rtas-event-scan-rate", NULL);	if (ip == NULL) {		printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n");		of_node_put(node);		return -1;	}	rtas_event_scan_rate = *ip;	DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate);	/* Make room for the sequence number */	rtas_error_log_max = rtas_get_error_log_max();	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);	of_node_put(node);	return 0;}static void do_event_scan(int event_scan){	int error;	do {		memset(logdata, 0, rtas_error_log_max);		error = rtas_call(event_scan, 4, 1, NULL,				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,				  __pa(logdata), rtas_error_log_max);		if (error == -1) {			printk(KERN_ERR "event-scan failed\n");			break;		}		if (error == 0)			pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);	} while(error == 0);}static void do_event_scan_all_cpus(long delay){	int cpu;	lock_cpu_hotplug();	cpu = first_cpu(cpu_online_map);	for (;;) {		set_cpus_allowed(current, cpumask_of_cpu(cpu));		do_event_scan(rtas_token("event-scan"));		set_cpus_allowed(current, CPU_MASK_ALL);		/* Drop hotplug lock, and sleep for the specified delay */		unlock_cpu_hotplug();		msleep_interruptible(delay);		lock_cpu_hotplug();		cpu = next_cpu(cpu, cpu_online_map);		if (cpu == NR_CPUS)			break;	}	unlock_cpu_hotplug();}static int rtasd(void *unused){	unsigned int err_type;	int event_scan = rtas_token("event-scan");	int rc;	daemonize("rtasd");	if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1)		goto error;	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);	if (!rtas_log_buf) {		printk(KERN_ERR "rtasd: no memory\n");		goto error;	}	printk(KERN_INFO "RTAS daemon started\n");	DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate));	/* See if we have any error stored in NVRAM */	memset(logdata, 0, rtas_error_log_max);	rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type);	/* We can use rtas_log_buf now */	no_logging = 0;	if (!rc) {		if (err_type != ERR_FLAG_ALREADY_LOGGED) {			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);		}	}	/* First pass. */	do_event_scan_all_cpus(1000);	if (surveillance_timeout != -1) {		DEBUG("enabling surveillance\n");		enable_surveillance(surveillance_timeout);		DEBUG("surveillance enabled\n");	}	/* Delay should be at least one second since some	 * machines have problems if we call event-scan too	 * quickly. */	for (;;)		do_event_scan_all_cpus(30000/rtas_event_scan_rate);error:	/* Should delete proc entries */	return -EINVAL;}static int __init rtas_init(void){	struct proc_dir_entry *entry;	if (!platform_is_pseries())		return 0;	/* No RTAS */	if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) {		printk(KERN_INFO "rtasd: no event-scan on system\n");		return 1;	}	entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL);	if (entry)		entry->proc_fops = &proc_rtas_log_operations;	else		printk(KERN_ERR "Failed to create error_log proc entry\n");	if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)		printk(KERN_ERR "Failed to start RTAS daemon\n");	return 0;}static int __init surveillance_setup(char *str){	int i;	if (get_option(&str,&i)) {		if (i >= 0 && i <= 255)			surveillance_timeout = i;	}	return 1;}static int __init rtasmsgs_setup(char *str){	if (strcmp(str, "on") == 0)		full_rtas_msgs = 1;	else if (strcmp(str, "off") == 0)		full_rtas_msgs = 0;	return 1;}__initcall(rtas_init);__setup("surveillance=", surveillance_setup);__setup("rtasmsgs=", rtasmsgs_setup);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -