⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mem.c

📁 linux-2.6.15.6
💻 C
字号:
/* *  PowerPC version *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) *  and Cort Dougan (PReP) (cort@cs.nmt.edu) *    Copyright (C) 1996 Paul Mackerras *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) * *  Derived from "arch/i386/mm/init.c" *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License *  as published by the Free Software Foundation; either version *  2 of the License, or (at your option) any later version. * */#include <linux/config.h>#include <linux/module.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/string.h>#include <linux/types.h>#include <linux/mm.h>#include <linux/stddef.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/highmem.h>#include <linux/initrd.h>#include <linux/pagemap.h>#include <asm/pgalloc.h>#include <asm/prom.h>#include <asm/io.h>#include <asm/mmu_context.h>#include <asm/pgtable.h>#include <asm/mmu.h>#include <asm/smp.h>#include <asm/machdep.h>#include <asm/btext.h>#include <asm/tlb.h>#include <asm/prom.h>#include <asm/lmb.h>#include <asm/sections.h>#include <asm/vdso.h>#include "mmu_decl.h"#ifndef CPU_FTR_COHERENT_ICACHE#define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */#define CPU_FTR_NOEXECUTE	0#endifint init_bootmem_done;int mem_init_done;unsigned long memory_limit;extern void hash_preload(struct mm_struct *mm, unsigned long ea,			 unsigned long access, unsigned long trap);/* * This is called by /dev/mem to know if a given address has to * be mapped non-cacheable or not */int page_is_ram(unsigned long pfn){	unsigned long paddr = (pfn << PAGE_SHIFT);#ifndef CONFIG_PPC64	/* XXX for now */	return paddr < __pa(high_memory);#else	int i;	for (i=0; i < lmb.memory.cnt; i++) {		unsigned long base;		base = lmb.memory.region[i].base;		if ((paddr >= base) &&			(paddr < (base + lmb.memory.region[i].size))) {			return 1;		}	}	return 0;#endif}EXPORT_SYMBOL(page_is_ram);pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,			      unsigned long size, pgprot_t vma_prot){	if (ppc_md.phys_mem_access_prot)		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);	if (!page_is_ram(pfn))		vma_prot = __pgprot(pgprot_val(vma_prot)				    | _PAGE_GUARDED | _PAGE_NO_CACHE);	return vma_prot;}EXPORT_SYMBOL(phys_mem_access_prot);#ifdef CONFIG_MEMORY_HOTPLUGvoid online_page(struct page *page){	ClearPageReserved(page);	set_page_count(page, 0);	free_cold_page(page);	totalram_pages++;	num_physpages++;}/* * This works only for the non-NUMA case.  Later, we'll need a lookup * to convert from real physical addresses to nid, that doesn't use * pfn_to_nid(). */int __devinit add_memory(u64 start, u64 size){	struct pglist_data *pgdata = NODE_DATA(0);	struct zone *zone;	unsigned long start_pfn = start >> PAGE_SHIFT;	unsigned long nr_pages = size >> PAGE_SHIFT;	start += KERNELBASE;	create_section_mapping(start, start + size);	/* this should work for most non-highmem platforms */	zone = pgdata->node_zones;	return __add_pages(zone, start_pfn, nr_pages);	return 0;}/* * First pass at this code will check to determine if the remove * request is within the RMO.  Do not allow removal within the RMO. */int __devinit remove_memory(u64 start, u64 size){	struct zone *zone;	unsigned long start_pfn, end_pfn, nr_pages;	start_pfn = start >> PAGE_SHIFT;	nr_pages = size >> PAGE_SHIFT;	end_pfn = start_pfn + nr_pages;	printk("%s(): Attempting to remove memoy in range "			"%lx to %lx\n", __func__, start, start+size);	/*	 * check for range within RMO	 */	zone = page_zone(pfn_to_page(start_pfn));	printk("%s(): memory will be removed from "			"the %s zone\n", __func__, zone->name);	/*	 * not handling removing memory ranges that	 * overlap multiple zones yet	 */	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))		goto overlap;	/* make sure it is NOT in RMO */	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {		printk("%s(): range to be removed must NOT be in RMO!\n",			__func__);		goto in_rmo;	}	return __remove_pages(zone, start_pfn, nr_pages);overlap:	printk("%s(): memory range to be removed overlaps "		"multiple zones!!!\n", __func__);in_rmo:	return -1;}#endif /* CONFIG_MEMORY_HOTPLUG */void show_mem(void){	unsigned long total = 0, reserved = 0;	unsigned long shared = 0, cached = 0;	unsigned long highmem = 0;	struct page *page;	pg_data_t *pgdat;	unsigned long i;	printk("Mem-info:\n");	show_free_areas();	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));	for_each_pgdat(pgdat) {		unsigned long flags;		pgdat_resize_lock(pgdat, &flags);		for (i = 0; i < pgdat->node_spanned_pages; i++) {			if (!pfn_valid(pgdat->node_start_pfn + i))				continue;			page = pgdat_page_nr(pgdat, i);			total++;			if (PageHighMem(page))				highmem++;			if (PageReserved(page))				reserved++;			else if (PageSwapCache(page))				cached++;			else if (page_count(page))				shared += page_count(page) - 1;		}		pgdat_resize_unlock(pgdat, &flags);	}	printk("%ld pages of RAM\n", total);#ifdef CONFIG_HIGHMEM	printk("%ld pages of HIGHMEM\n", highmem);#endif	printk("%ld reserved pages\n", reserved);	printk("%ld pages shared\n", shared);	printk("%ld pages swap cached\n", cached);}/* * Initialize the bootmem system and give it all the memory we * have available.  If we are using highmem, we only put the * lowmem into the bootmem system. */#ifndef CONFIG_NEED_MULTIPLE_NODESvoid __init do_init_bootmem(void){	unsigned long i;	unsigned long start, bootmap_pages;	unsigned long total_pages;	int boot_mapsize;	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;#ifdef CONFIG_HIGHMEM	total_pages = total_lowmem >> PAGE_SHIFT;#endif	/*	 * Find an area to use for the bootmem bitmap.  Calculate the size of	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.	 * Add 1 additional page in case the address isn't page-aligned.	 */	bootmap_pages = bootmem_bootmap_pages(total_pages);	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);	BUG_ON(!start);	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);	/* Add all physical memory to the bootmem map, mark each area	 * present.	 */	for (i = 0; i < lmb.memory.cnt; i++) {		unsigned long base = lmb.memory.region[i].base;		unsigned long size = lmb_size_bytes(&lmb.memory, i);#ifdef CONFIG_HIGHMEM		if (base >= total_lowmem)			continue;		if (base + size > total_lowmem)			size = total_lowmem - base;#endif		free_bootmem(base, size);	}	/* reserve the sections we're already using */	for (i = 0; i < lmb.reserved.cnt; i++)		reserve_bootmem(lmb.reserved.region[i].base,				lmb_size_bytes(&lmb.reserved, i));	/* XXX need to clip this if using highmem? */	for (i = 0; i < lmb.memory.cnt; i++)		memory_present(0, lmb_start_pfn(&lmb.memory, i),			       lmb_end_pfn(&lmb.memory, i));	init_bootmem_done = 1;}/* * paging_init() sets up the page tables - in fact we've already done this. */void __init paging_init(void){	unsigned long zones_size[MAX_NR_ZONES];	unsigned long zholes_size[MAX_NR_ZONES];	unsigned long total_ram = lmb_phys_mem_size();	unsigned long top_of_ram = lmb_end_of_DRAM();#ifdef CONFIG_HIGHMEM	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);	kmap_prot = PAGE_KERNEL;#endif /* CONFIG_HIGHMEM */	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",	       top_of_ram, total_ram);	printk(KERN_INFO "Memory hole size: %ldMB\n",	       (top_of_ram - total_ram) >> 20);	/*	 * All pages are DMA-able so we put them all in the DMA zone.	 */	memset(zones_size, 0, sizeof(zones_size));	memset(zholes_size, 0, sizeof(zholes_size));	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;#ifdef CONFIG_HIGHMEM	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;#else	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;#endif /* CONFIG_HIGHMEM */	free_area_init_node(0, NODE_DATA(0), zones_size,			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);}#endif /* ! CONFIG_NEED_MULTIPLE_NODES */void __init mem_init(void){#ifdef CONFIG_NEED_MULTIPLE_NODES	int nid;#endif	pg_data_t *pgdat;	unsigned long i;	struct page *page;	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;	num_physpages = lmb.memory.size >> PAGE_SHIFT;	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);#ifdef CONFIG_NEED_MULTIPLE_NODES        for_each_online_node(nid) {		if (NODE_DATA(nid)->node_spanned_pages != 0) {			printk("freeing bootmem node %x\n", nid);			totalram_pages +=				free_all_bootmem_node(NODE_DATA(nid));		}	}#else	max_mapnr = max_pfn;	totalram_pages += free_all_bootmem();#endif	for_each_pgdat(pgdat) {		for (i = 0; i < pgdat->node_spanned_pages; i++) {			if (!pfn_valid(pgdat->node_start_pfn + i))				continue;			page = pgdat_page_nr(pgdat, i);			if (PageReserved(page))				reservedpages++;		}	}	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;#ifdef CONFIG_HIGHMEM	{		unsigned long pfn, highmem_mapnr;		highmem_mapnr = total_lowmem >> PAGE_SHIFT;		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {			struct page *page = pfn_to_page(pfn);			ClearPageReserved(page);			set_page_count(page, 1);			__free_page(page);			totalhigh_pages++;		}		totalram_pages += totalhigh_pages;		printk(KERN_INFO "High memory: %luk\n",		       totalhigh_pages << (PAGE_SHIFT-10));	}#endif /* CONFIG_HIGHMEM */	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "	       "%luk reserved, %luk data, %luk bss, %luk init)\n",		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),		num_physpages << (PAGE_SHIFT-10),		codesize >> 10,		reservedpages << (PAGE_SHIFT-10),		datasize >> 10,		bsssize >> 10,		initsize >> 10);	mem_init_done = 1;	/* Initialize the vDSO */	vdso_init();}/* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean.  We do the i-cache * flush later when the page is given to a user process, if necessary. */void flush_dcache_page(struct page *page){	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))		return;	/* avoid an atomic op if possible */	if (test_bit(PG_arch_1, &page->flags))		clear_bit(PG_arch_1, &page->flags);}EXPORT_SYMBOL(flush_dcache_page);void flush_dcache_icache_page(struct page *page){#ifdef CONFIG_BOOKE	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);	__flush_dcache_icache(start);	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)	/* On 8xx there is no need to kmap since highmem is not supported */	__flush_dcache_icache(page_address(page)); #else	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);#endif}void clear_user_page(void *page, unsigned long vaddr, struct page *pg){	clear_page(page);	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))		return;	/*	 * We shouldnt have to do this, but some versions of glibc	 * require it (ld.so assumes zero filled pages are icache clean)	 * - Anton	 */	/* avoid an atomic op if possible */	if (test_bit(PG_arch_1, &pg->flags))		clear_bit(PG_arch_1, &pg->flags);}EXPORT_SYMBOL(clear_user_page);void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,		    struct page *pg){	copy_page(vto, vfrom);	/*	 * We should be able to use the following optimisation, however	 * there are two problems.	 * Firstly a bug in some versions of binutils meant PLT sections	 * were not marked executable.	 * Secondly the first word in the GOT section is blrl, used	 * to establish the GOT address. Until recently the GOT was	 * not marked executable.	 * - Anton	 */#if 0	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))		return;#endif	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))		return;	/* avoid an atomic op if possible */	if (test_bit(PG_arch_1, &pg->flags))		clear_bit(PG_arch_1, &pg->flags);}void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,			     unsigned long addr, int len){	unsigned long maddr;	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);	flush_icache_range(maddr, maddr + len);	kunmap(page);}EXPORT_SYMBOL(flush_icache_user_range);/* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. *  * This must always be called with the pte lock held. */void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,		      pte_t pte){#ifdef CONFIG_PPC_STD_MMU	unsigned long access = 0, trap;#endif	unsigned long pfn = pte_pfn(pte);	/* handle i-cache coherency */	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&	    pfn_valid(pfn)) {		struct page *page = pfn_to_page(pfn);		if (!PageReserved(page)		    && !test_bit(PG_arch_1, &page->flags)) {			if (vma->vm_mm == current->active_mm) {#ifdef CONFIG_8xx			/* On 8xx, cache control instructions (particularly 		 	 * "dcbst" from flush_dcache_icache) fault as write 			 * operation if there is an unpopulated TLB entry 			 * for the address in question. To workaround that, 			 * we invalidate the TLB here, thus avoiding dcbst 			 * misbehaviour.			 */				_tlbie(address);#endif				__flush_dcache_icache((void *) address);			} else				flush_dcache_icache_page(page);			set_bit(PG_arch_1, &page->flags);		}	}#ifdef CONFIG_PPC_STD_MMU	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */	if (!pte_young(pte) || address >= TASK_SIZE)		return;	/* We try to figure out if we are coming from an instruction	 * access fault and pass that down to __hash_page so we avoid	 * double-faulting on execution of fresh text. We have to test	 * for regs NULL since init will get here first thing at boot	 *	 * We also avoid filling the hash if not coming from a fault	 */	if (current->thread.regs == NULL)		return;	trap = TRAP(current->thread.regs);	if (trap == 0x400)		access |= _PAGE_EXEC;	else if (trap != 0x300)		return;	hash_preload(vma->vm_mm, address, access, trap);#endif /* CONFIG_PPC_STD_MMU */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -