⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 head.s

📁 linux-2.6.15.6
💻 S
字号:
/* *  linux/arch/arm/kernel/head.S * *  Copyright (C) 1994-2002 Russell King *  Copyright (c) 2003 ARM Limited *  All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * *  Kernel startup code for all 32-bit CPUs */#include <linux/config.h>#include <linux/linkage.h>#include <linux/init.h>#include <asm/assembler.h>#include <asm/domain.h>#include <asm/procinfo.h>#include <asm/ptrace.h>#include <asm/asm-offsets.h>#include <asm/memory.h>#include <asm/thread_info.h>#include <asm/system.h>#define PROCINFO_MMUFLAGS	8#define PROCINFO_INITFUNC	12#define MACHINFO_TYPE		0#define MACHINFO_PHYSRAM	4#define MACHINFO_PHYSIO		8#define MACHINFO_PGOFFIO	12#define MACHINFO_NAME		16/* * swapper_pg_dir is the virtual address of the initial page table. * We place the page tables 16K below KERNEL_RAM_ADDR.  Therefore, we must * make sure that KERNEL_RAM_ADDR is correctly set.  Currently, we expect * the least significant 16 bits to be 0x8000, but we could probably * relax this restriction to KERNEL_RAM_ADDR >= PAGE_OFFSET + 0x4000. */#if (KERNEL_RAM_ADDR & 0xffff) != 0x8000#error KERNEL_RAM_ADDR must start at 0xXXXX8000#endif	.globl	swapper_pg_dir	.equ	swapper_pg_dir, KERNEL_RAM_ADDR - 0x4000	.macro	pgtbl, rd	ldr	\rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4000))	.endm#ifdef CONFIG_XIP_KERNEL#define TEXTADDR  XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)#else#define TEXTADDR  KERNEL_RAM_ADDR#endif/* * Kernel startup entry point. * --------------------------- * * This is normally called from the decompressor code.  The requirements * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0, * r1 = machine nr. * * This code is mostly position independent, so if you link the kernel at * 0xc0008000, you call this at __pa(0xc0008000). * * See linux/arch/arm/tools/mach-types for the complete list of machine * numbers for r1. * * We're trying to keep crap to a minimum; DO NOT add any machine specific * crap here - that's what the boot loader (or in extreme, well justified * circumstances, zImage) is for. */	__INIT	.type	stext, %functionENTRY(stext)	msr	cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @ ensure svc mode						@ and irqs disabled	bl	__lookup_processor_type		@ r5=procinfo r9=cpuid	movs	r10, r5				@ invalid processor (r5=0)?	beq	__error_p			@ yes, error 'p'	bl	__lookup_machine_type		@ r5=machinfo	movs	r8, r5				@ invalid machine (r5=0)?	beq	__error_a			@ yes, error 'a'	bl	__create_page_tables	/*	 * The following calls CPU specific code in a position independent	 * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of	 * xxx_proc_info structure selected by __lookup_machine_type	 * above.  On return, the CPU will be ready for the MMU to be	 * turned on, and r0 will hold the CPU control register value.	 */	ldr	r13, __switch_data		@ address to jump to after						@ mmu has been enabled	adr	lr, __enable_mmu		@ return (PIC) address	add	pc, r10, #PROCINFO_INITFUNC	.type	__switch_data, %object__switch_data:	.long	__mmap_switched	.long	__data_loc			@ r4	.long	__data_start			@ r5	.long	__bss_start			@ r6	.long	_end				@ r7	.long	processor_id			@ r4	.long	__machine_arch_type		@ r5	.long	cr_alignment			@ r6	.long	init_thread_union + THREAD_START_SP @ sp/* * The following fragment of code is executed with the MMU on, and uses * absolute addresses; this is not position independent. * *  r0  = cp#15 control register *  r1  = machine ID *  r9  = processor ID */	.type	__mmap_switched, %function__mmap_switched:	adr	r3, __switch_data + 4	ldmia	r3!, {r4, r5, r6, r7}	cmp	r4, r5				@ Copy data segment if needed1:	cmpne	r5, r6	ldrne	fp, [r4], #4	strne	fp, [r5], #4	bne	1b	mov	fp, #0				@ Clear BSS (and zero fp)1:	cmp	r6, r7	strcc	fp, [r6],#4	bcc	1b	ldmia	r3, {r4, r5, r6, sp}	str	r9, [r4]			@ Save processor ID	str	r1, [r5]			@ Save machine type	bic	r4, r0, #CR_A			@ Clear 'A' bit	stmia	r6, {r0, r4}			@ Save control register values	b	start_kernel#if defined(CONFIG_SMP)	.type   secondary_startup, #functionENTRY(secondary_startup)	/*	 * Common entry point for secondary CPUs.	 *	 * Ensure that we're in SVC mode, and IRQs are disabled.  Lookup	 * the processor type - there is no need to check the machine type	 * as it has already been validated by the primary processor.	 */	msr	cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC	bl	__lookup_processor_type	movs	r10, r5				@ invalid processor?	moveq	r0, #'p'			@ yes, error 'p'	beq	__error	/*	 * Use the page tables supplied from  __cpu_up.	 */	adr	r4, __secondary_data	ldmia	r4, {r5, r6, r13}		@ address to jump to after	sub	r4, r4, r5			@ mmu has been enabled	ldr	r4, [r6, r4]			@ get secondary_data.pgdir	adr	lr, __enable_mmu		@ return address	add	pc, r10, #12			@ initialise processor						@ (return control reg)	/*	 * r6  = &secondary_data	 */ENTRY(__secondary_switched)	ldr	sp, [r6, #4]			@ get secondary_data.stack	mov	fp, #0	b	secondary_start_kernel	.type	__secondary_data, %object__secondary_data:	.long	.	.long	secondary_data	.long	__secondary_switched#endif /* defined(CONFIG_SMP) *//* * Setup common bits before finally enabling the MMU.  Essentially * this is just loading the page table pointer and domain access * registers. */	.type	__enable_mmu, %function__enable_mmu:#ifdef CONFIG_ALIGNMENT_TRAP	orr	r0, r0, #CR_A#else	bic	r0, r0, #CR_A#endif#ifdef CONFIG_CPU_DCACHE_DISABLE	bic	r0, r0, #CR_C#endif#ifdef CONFIG_CPU_BPREDICT_DISABLE	bic	r0, r0, #CR_Z#endif#ifdef CONFIG_CPU_ICACHE_DISABLE	bic	r0, r0, #CR_I#endif	mov	r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \		      domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \		      domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \		      domain_val(DOMAIN_IO, DOMAIN_CLIENT))	mcr	p15, 0, r5, c3, c0, 0		@ load domain access register	mcr	p15, 0, r4, c2, c0, 0		@ load page table pointer	b	__turn_mmu_on/* * Enable the MMU.  This completely changes the structure of the visible * memory space.  You will not be able to trace execution through this. * If you have an enquiry about this, *please* check the linux-arm-kernel * mailing list archives BEFORE sending another post to the list. * *  r0  = cp#15 control register *  r13 = *virtual* address to jump to upon completion * * other registers depend on the function called upon completion */	.align	5	.type	__turn_mmu_on, %function__turn_mmu_on:	mov	r0, r0	mcr	p15, 0, r0, c1, c0, 0		@ write control reg	mrc	p15, 0, r3, c0, c0, 0		@ read id reg	mov	r3, r3	mov	r3, r3	mov	pc, r13/* * Setup the initial page tables.  We only setup the barest * amount which are required to get the kernel running, which * generally means mapping in the kernel code. * * r8  = machinfo * r9  = cpuid * r10 = procinfo * * Returns: *  r0, r3, r5, r6, r7 corrupted *  r4 = physical page table address */	.type	__create_page_tables, %function__create_page_tables:	ldr	r5, [r8, #MACHINFO_PHYSRAM]	@ physram	pgtbl	r4				@ page table address	/*	 * Clear the 16K level 1 swapper page table	 */	mov	r0, r4	mov	r3, #0	add	r6, r0, #0x40001:	str	r3, [r0], #4	str	r3, [r0], #4	str	r3, [r0], #4	str	r3, [r0], #4	teq	r0, r6	bne	1b	ldr	r7, [r10, #PROCINFO_MMUFLAGS]	@ mmuflags	/*	 * Create identity mapping for first MB of kernel to	 * cater for the MMU enable.  This identity mapping	 * will be removed by paging_init().  We use our current program	 * counter to determine corresponding section base address.	 */	mov	r6, pc, lsr #20			@ start of kernel section	orr	r3, r7, r6, lsl #20		@ flags + kernel base	str	r3, [r4, r6, lsl #2]		@ identity mapping	/*	 * Now setup the pagetables for our kernel direct	 * mapped region.  We round TEXTADDR down to the	 * nearest megabyte boundary.  It is assumed that	 * the kernel fits within 4 contigous 1MB sections.	 */	add	r0, r4,  #(TEXTADDR & 0xff000000) >> 18	@ start of kernel	str	r3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!	add	r3, r3, #1 << 20	str	r3, [r0, #4]!			@ KERNEL + 1MB	add	r3, r3, #1 << 20	str	r3, [r0, #4]!			@ KERNEL + 2MB	add	r3, r3, #1 << 20	str	r3, [r0, #4]			@ KERNEL + 3MB	/*	 * Then map first 1MB of ram in case it contains our boot params.	 */	add	r0, r4, #PAGE_OFFSET >> 18	orr	r6, r5, r7	str	r6, [r0]#ifdef CONFIG_XIP_KERNEL	/*	 * Map some ram to cover our .data and .bss areas.	 * Mapping 3MB should be plenty.	 */	sub	r3, r4, r5	mov	r3, r3, lsr #20	add	r0, r0, r3, lsl #2	add	r6, r6, r3, lsl #20	str	r6, [r0], #4	add	r6, r6, #(1 << 20)	str	r6, [r0], #4	add	r6, r6, #(1 << 20)	str	r6, [r0]#endif#ifdef CONFIG_DEBUG_LL	bic	r7, r7, #0x0c			@ turn off cacheable						@ and bufferable bits	/*	 * Map in IO space for serial debugging.	 * This allows debug messages to be output	 * via a serial console before paging_init.	 */	ldr	r3, [r8, #MACHINFO_PGOFFIO]	add	r0, r4, r3	rsb	r3, r3, #0x4000			@ PTRS_PER_PGD*sizeof(long)	cmp	r3, #0x0800			@ limit to 512MB	movhi	r3, #0x0800	add	r6, r0, r3	ldr	r3, [r8, #MACHINFO_PHYSIO]	orr	r3, r3, r71:	str	r3, [r0], #4	add	r3, r3, #1 << 20	teq	r0, r6	bne	1b#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)	/*	 * If we're using the NetWinder or CATS, we also need to map	 * in the 16550-type serial port for the debug messages	 */	add	r0, r4, #0xff000000 >> 18	orr	r3, r7, #0x7c000000	str	r3, [r0]#endif#ifdef CONFIG_ARCH_RPC	/*	 * Map in screen at 0x02000000 & SCREEN2_BASE	 * Similar reasons here - for debug.  This is	 * only for Acorn RiscPC architectures.	 */	add	r0, r4, #0x02000000 >> 18	orr	r3, r7, #0x02000000	str	r3, [r0]	add	r0, r4, #0xd8000000 >> 18	str	r3, [r0]#endif#endif	mov	pc, lr	.ltorg/* * Exception handling.  Something went wrong and we can't proceed.  We * ought to tell the user, but since we don't have any guarantee that * we're even running on the right architecture, we do virtually nothing. * * If CONFIG_DEBUG_LL is set we try to print out something about the error * and hope for the best (useful if bootloader fails to pass a proper * machine ID for example). */	.type	__error_p, %function__error_p:#ifdef CONFIG_DEBUG_LL	adr	r0, str_p1	bl	printascii	b	__errorstr_p1:	.asciz	"\nError: unrecognized/unsupported processor variant.\n"	.align#endif	.type	__error_a, %function__error_a:#ifdef CONFIG_DEBUG_LL	mov	r4, r1				@ preserve machine ID	adr	r0, str_a1	bl	printascii	mov	r0, r4	bl	printhex8	adr	r0, str_a2	bl	printascii	adr	r3, 3f	ldmia	r3, {r4, r5, r6}		@ get machine desc list	sub	r4, r3, r4			@ get offset between virt&phys	add	r5, r5, r4			@ convert virt addresses to	add	r6, r6, r4			@ physical address space1:	ldr	r0, [r5, #MACHINFO_TYPE]	@ get machine type	bl	printhex8	mov	r0, #'\t'	bl	printch	ldr     r0, [r5, #MACHINFO_NAME]	@ get machine name	add	r0, r0, r4	bl	printascii	mov	r0, #'\n'	bl	printch	add	r5, r5, #SIZEOF_MACHINE_DESC	@ next machine_desc	cmp	r5, r6	blo	1b	adr	r0, str_a3	bl	printascii	b	__errorstr_a1:	.asciz	"\nError: unrecognized/unsupported machine ID (r1 = 0x"str_a2:	.asciz	").\n\nAvailable machine support:\n\nID (hex)\tNAME\n"str_a3:	.asciz	"\nPlease check your kernel config and/or bootloader.\n"	.align#endif	.type	__error, %function__error:#ifdef CONFIG_ARCH_RPC/* * Turn the screen red on a error - RiscPC only. */	mov	r0, #0x02000000	mov	r3, #0x11	orr	r3, r3, r3, lsl #8	orr	r3, r3, r3, lsl #16	str	r3, [r0], #4	str	r3, [r0], #4	str	r3, [r0], #4	str	r3, [r0], #4#endif1:	mov	r0, r0	b	1b/* * Read processor ID register (CP#15, CR0), and look up in the linker-built * supported processor list.  Note that we can't use the absolute addresses * for the __proc_info lists since we aren't running with the MMU on * (and therefore, we are not in the correct address space).  We have to * calculate the offset. * * Returns: *	r3, r4, r6 corrupted *	r5 = proc_info pointer in physical address space *	r9 = cpuid */	.type	__lookup_processor_type, %function__lookup_processor_type:	adr	r3, 3f	ldmda	r3, {r5, r6, r9}	sub	r3, r3, r9			@ get offset between virt&phys	add	r5, r5, r3			@ convert virt addresses to	add	r6, r6, r3			@ physical address space	mrc	p15, 0, r9, c0, c0		@ get processor id1:	ldmia	r5, {r3, r4}			@ value, mask	and	r4, r4, r9			@ mask wanted bits	teq	r3, r4	beq	2f	add	r5, r5, #PROC_INFO_SZ		@ sizeof(proc_info_list)	cmp	r5, r6	blo	1b	mov	r5, #0				@ unknown processor2:	mov	pc, lr/* * This provides a C-API version of the above function. */ENTRY(lookup_processor_type)	stmfd	sp!, {r4 - r6, r9, lr}	bl	__lookup_processor_type	mov	r0, r5	ldmfd	sp!, {r4 - r6, r9, pc}/* * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for * more information about the __proc_info and __arch_info structures. */	.long	__proc_info_begin	.long	__proc_info_end3:	.long	.	.long	__arch_info_begin	.long	__arch_info_end/* * Lookup machine architecture in the linker-build list of architectures. * Note that we can't use the absolute addresses for the __arch_info * lists since we aren't running with the MMU on (and therefore, we are * not in the correct address space).  We have to calculate the offset. * *  r1 = machine architecture number * Returns: *  r3, r4, r6 corrupted *  r5 = mach_info pointer in physical address space */	.type	__lookup_machine_type, %function__lookup_machine_type:	adr	r3, 3b	ldmia	r3, {r4, r5, r6}	sub	r3, r3, r4			@ get offset between virt&phys	add	r5, r5, r3			@ convert virt addresses to	add	r6, r6, r3			@ physical address space1:	ldr	r3, [r5, #MACHINFO_TYPE]	@ get machine type	teq	r3, r1				@ matches loader number?	beq	2f				@ found	add	r5, r5, #SIZEOF_MACHINE_DESC	@ next machine_desc	cmp	r5, r6	blo	1b	mov	r5, #0				@ unknown machine2:	mov	pc, lr/* * This provides a C-API version of the above function. */ENTRY(lookup_machine_type)	stmfd	sp!, {r4 - r6, lr}	mov	r1, r0	bl	__lookup_machine_type	mov	r0, r5	ldmfd	sp!, {r4 - r6, pc}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -