⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 init.c

📁 linux-2.6.15.6
💻 C
字号:
/* * arch/xtensa/mm/init.c * * Derived from MIPS, PPC. * * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001 - 2005 Tensilica Inc. * * Chris Zankel	<chris@zankel.net> * Joe Taylor	<joe@tensilica.com, joetylr@yahoo.com> * Marc Gauthier * Kevin Chea */#include <linux/config.h>#include <linux/init.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/errno.h>#include <linux/string.h>#include <linux/types.h>#include <linux/ptrace.h>#include <linux/bootmem.h>#include <linux/swap.h>#include <asm/pgtable.h>#include <asm/bootparam.h>#include <asm/mmu_context.h>#include <asm/tlb.h>#include <asm/tlbflush.h>#include <asm/page.h>#include <asm/pgalloc.h>#include <asm/pgtable.h>#define DEBUG 0DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);//static DEFINE_SPINLOCK(tlb_lock);/* * This flag is used to indicate that the page was mapped and modified in * kernel space, so the cache is probably dirty at that address. * If cache aliasing is enabled and the page color mismatches, update_mmu_cache * synchronizes the caches if this bit is set. */#define PG_cache_clean PG_arch_1/* References to section boundaries */extern char _ftext, _etext, _fdata, _edata, _rodata_end;extern char __init_begin, __init_end;/* * mem_reserve(start, end, must_exist) * * Reserve some memory from the memory pool. * * Parameters: *  start	Start of region, *  end		End of region, *  must_exist	Must exist in memory pool. * * Returns: *  0 (memory area couldn't be mapped) * -1 (success) */int __init mem_reserve(unsigned long start, unsigned long end, int must_exist){	int i;	if (start == end)		return 0;	start = start & PAGE_MASK;	end = PAGE_ALIGN(end);	for (i = 0; i < sysmem.nr_banks; i++)		if (start < sysmem.bank[i].end		    && end >= sysmem.bank[i].start)			break;	if (i == sysmem.nr_banks) {		if (must_exist)			printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) "				"not in any region!\n", start, end);		return 0;	}	if (start > sysmem.bank[i].start) {		if (end < sysmem.bank[i].end) {			/* split entry */			if (sysmem.nr_banks >= SYSMEM_BANKS_MAX)				panic("meminfo overflow\n");			sysmem.bank[sysmem.nr_banks].start = end;			sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end;			sysmem.nr_banks++;		}		sysmem.bank[i].end = start;	} else {		if (end < sysmem.bank[i].end)			sysmem.bank[i].start = end;		else {			/* remove entry */			sysmem.nr_banks--;			sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start;			sysmem.bank[i].end   = sysmem.bank[sysmem.nr_banks].end;		}	}	return -1;}/* * Initialize the bootmem system and give it all the memory we have available. */void __init bootmem_init(void){	unsigned long pfn;	unsigned long bootmap_start, bootmap_size;	int i;	max_low_pfn = max_pfn = 0;	min_low_pfn = ~0;	for (i=0; i < sysmem.nr_banks; i++) {		pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT;		if (pfn < min_low_pfn)			min_low_pfn = pfn;		pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT;		if (pfn > max_pfn)			max_pfn = pfn;	}	if (min_low_pfn > max_pfn)		panic("No memory found!\n");	max_low_pfn = max_pfn < MAX_LOW_MEMORY >> PAGE_SHIFT ?		max_pfn : MAX_LOW_MEMORY >> PAGE_SHIFT;	/* Find an area to use for the bootmem bitmap. */	bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT;	bootmap_start = ~0;	for (i=0; i<sysmem.nr_banks; i++)		if (sysmem.bank[i].end - sysmem.bank[i].start >= bootmap_size) {			bootmap_start = sysmem.bank[i].start;			break;		}	if (bootmap_start == ~0UL)		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);	/* Reserve the bootmem bitmap area */	mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1);	bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn,					 bootmap_start >> PAGE_SHIFT,					 max_low_pfn);	/* Add all remaining memory pieces into the bootmem map */	for (i=0; i<sysmem.nr_banks; i++)		free_bootmem(sysmem.bank[i].start,			     sysmem.bank[i].end - sysmem.bank[i].start);}void __init paging_init(void){	unsigned long zones_size[MAX_NR_ZONES];	int i;	/* All pages are DMA-able, so we put them all in the DMA zone. */	zones_size[ZONE_DMA] = max_low_pfn;	for (i = 1; i < MAX_NR_ZONES; i++)		zones_size[i] = 0;#ifdef CONFIG_HIGHMEM	zones_size[ZONE_HIGHMEM] = max_pfn - max_low_pfn;#endif	/* Initialize the kernel's page tables. */	memset(swapper_pg_dir, 0, PAGE_SIZE);	free_area_init(zones_size);}/* * Flush the mmu and reset associated register to default values. */void __init init_mmu (void){	/* Writing zeros to the <t>TLBCFG special registers ensure	 * that valid values exist in the register.  For existing	 * PGSZID<w> fields, zero selects the first element of the	 * page-size array.  For nonexistant PGSZID<w> fields, zero is	 * the best value to write.  Also, when changing PGSZID<w>	 * fields, the corresponding TLB must be flushed.	 */	set_itlbcfg_register (0);	set_dtlbcfg_register (0);	flush_tlb_all ();	/* Set rasid register to a known value. */	set_rasid_register (ASID_ALL_RESERVED);	/* Set PTEVADDR special register to the start of the page	 * table, which is in kernel mappable space (ie. not	 * statically mapped).  This register's value is undefined on	 * reset.	 */	set_ptevaddr_register (PGTABLE_START);}/* * Initialize memory pages. */void __init mem_init(void){	unsigned long codesize, reservedpages, datasize, initsize;	unsigned long highmemsize, tmp, ram;	max_mapnr = num_physpages = max_low_pfn;	high_memory = (void *) __va(max_mapnr << PAGE_SHIFT);	highmemsize = 0;#ifdef CONFIG_HIGHMEM#error HIGHGMEM not implemented in init.c#endif	totalram_pages += free_all_bootmem();	reservedpages = ram = 0;	for (tmp = 0; tmp < max_low_pfn; tmp++) {		ram++;		if (PageReserved(mem_map+tmp))			reservedpages++;	}	codesize =  (unsigned long) &_etext - (unsigned long) &_ftext;	datasize =  (unsigned long) &_edata - (unsigned long) &_fdata;	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;	printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, "	       "%ldk data, %ldk init %ldk highmem)\n",	       (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),	       ram << (PAGE_SHIFT-10),	       codesize >> 10,	       reservedpages << (PAGE_SHIFT-10),	       datasize >> 10,	       initsize >> 10,	       highmemsize >> 10);}voidfree_reserved_mem(void *start, void *end){	for (; start < end; start += PAGE_SIZE) {		ClearPageReserved(virt_to_page(start));		set_page_count(virt_to_page(start), 1);		free_page((unsigned long)start);		totalram_pages++;	}}#ifdef CONFIG_BLK_DEV_INITRDextern int initrd_is_mapped;void free_initrd_mem(unsigned long start, unsigned long end){	if (initrd_is_mapped) {		free_reserved_mem((void*)start, (void*)end);		printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10);	}}#endifvoid free_initmem(void){	free_reserved_mem(&__init_begin, &__init_end);	printk("Freeing unused kernel memory: %dk freed\n",	       (&__init_end - &__init_begin) >> 10);}void show_mem(void){	int i, free = 0, total = 0, reserved = 0;	int shared = 0, cached = 0;	printk("Mem-info:\n");	show_free_areas();	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));	i = max_mapnr;	while (i-- > 0) {		total++;		if (PageReserved(mem_map+i))			reserved++;		else if (PageSwapCache(mem_map+i))			cached++;		else if (!page_count(mem_map + i))			free++;		else			shared += page_count(mem_map + i) - 1;	}	printk("%d pages of RAM\n", total);	printk("%d reserved pages\n", reserved);	printk("%d pages shared\n", shared);	printk("%d pages swap cached\n",cached);	printk("%d free pages\n", free);}/* ------------------------------------------------------------------------- */#if (DCACHE_WAY_SIZE > PAGE_SIZE)/* * With cache aliasing, the page color of the page in kernel space and user * space might mismatch. We temporarily map the page to a different virtual * address with the same color and clear the page there. */void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page){  	/*  There shouldn't be any entries for this page. */	__flush_invalidate_dcache_page_phys(__pa(page_address(page)));	if (!PAGE_COLOR_EQ(vaddr, kaddr)) {		unsigned long v, p;		/* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */		spin_lock(&tlb_lock);		p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL)));		kaddr = (void*)PAGE_COLOR_MAP0(vaddr);		v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0;		__asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v));		clear_page(kaddr);		spin_unlock(&tlb_lock);	} else {		clear_page(kaddr);	}	/* We need to make sure that i$ and d$ are coherent. */	clear_bit(PG_cache_clean, &page->flags);}/* * With cache aliasing, we have to make sure that the page color of the page * in kernel space matches that of the virtual user address before we read * the page. If the page color differ, we create a temporary DTLB entry with * the corrent page color and use this 'temporary' address as the source. * We then use the same approach as in clear_user_page and copy the data * to the kernel space and clear the PG_cache_clean bit to synchronize caches * later. * * Note: * Instead of using another 'way' for the temporary DTLB entry, we could * probably use the same entry that points to the kernel address (after * saving the original value and restoring it when we are done). */void copy_user_page(void* to, void* from, unsigned long vaddr,    		    struct page* to_page){	/* There shouldn't be any entries for the new page. */	__flush_invalidate_dcache_page_phys(__pa(page_address(to_page)));	spin_lock(&tlb_lock);	if (!PAGE_COLOR_EQ(vaddr, from)) {		unsigned long v, p, t;		__asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1"				      : "=a"(p), "=a"(t) : "a"(from));		from = (void*)PAGE_COLOR_MAP0(vaddr);		v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0;		__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));	}	if (!PAGE_COLOR_EQ(vaddr, to)) {		unsigned long v, p;		p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL)));		to = (void*)PAGE_COLOR_MAP1(vaddr);		v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1;		__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));	}	copy_page(to, from);	spin_unlock(&tlb_lock);	/* We need to make sure that i$ and d$ are coherent. */	clear_bit(PG_cache_clean, &to_page->flags);}/* * Any time the kernel writes to a user page cache page, or it is about to * read from a page cache page this routine is called. * * Note: * The kernel currently only provides one architecture bit in the page * flags that we use for I$/D$ coherency. Maybe, in future, we can * use a sepearte bit for deferred dcache aliasing: * If the page is not mapped yet, we only need to set a flag, * if mapped, we need to invalidate the page. */// FIXME: we probably need this for WB caches not only for Page Coloring..void flush_dcache_page(struct page *page){	unsigned long addr = __pa(page_address(page));	struct address_space *mapping = page_mapping(page);	__flush_invalidate_dcache_page_phys(addr);	if (!test_bit(PG_cache_clean, &page->flags))		return;	/* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/#if 0	if (mapping && !mapping_mapped(mapping))		clear_bit(PG_cache_clean, &page->flags);	else#endif		__invalidate_icache_page_phys(addr);}void flush_cache_range(struct vm_area_struct* vma, unsigned long s,		       unsigned long e){	__flush_invalidate_cache_all();}void flush_cache_page(struct vm_area_struct* vma, unsigned long address,    		      unsigned long pfn){	struct page *page = pfn_to_page(pfn);	/* Remove any entry for the old mapping. */	if (current->active_mm == vma->vm_mm) {		unsigned long addr = __pa(page_address(page));		__flush_invalidate_dcache_page_phys(addr);		if ((vma->vm_flags & VM_EXEC) != 0)			__invalidate_icache_page_phys(addr);	} else {		BUG();	}}#endif	/* (DCACHE_WAY_SIZE > PAGE_SIZE) */pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr){	pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0);	if (likely(pte)) {	       	pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET);		int i;		for (i = 0; i < 1024; i++, ptep++)			pte_clear(mm, addr, ptep);	}	return pte;}struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr){	struct page *page;	page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0);	if (likely(page)) {		pte_t* ptep = kmap_atomic(page, KM_USER0);		int i;		for (i = 0; i < 1024; i++, ptep++)			pte_clear(mm, addr, ptep);		kunmap_atomic(ptep, KM_USER0);	}	return page;}/* * Handle D$/I$ coherency. * * Note: * We only have one architecture bit for the page flags, so we cannot handle * cache aliasing, yet. */voidupdate_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte){	unsigned long pfn = pte_pfn(pte);	struct page *page;	unsigned long vaddr = addr & PAGE_MASK;	if (!pfn_valid(pfn))		return;	page = pfn_to_page(pfn);	invalidate_itlb_mapping(addr);	invalidate_dtlb_mapping(addr);	/* We have a new mapping. Use it. */	write_dtlb_entry(pte, dtlb_probe(addr));	/* If the processor can execute from this page, synchronize D$/I$. */	if ((vma->vm_flags & VM_EXEC) != 0) {		write_itlb_entry(pte, itlb_probe(addr));		/* Synchronize caches, if not clean. */		if (!test_and_set_bit(PG_cache_clean, &page->flags)) {			__flush_dcache_page(vaddr);			__invalidate_icache_page(vaddr);		}	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -