⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gate.s

📁 linux-2.6.15.6
💻 S
字号:
/* * This file contains the code that gets mapped at the upper end of each task's text * region.  For now, it contains the signal trampoline code only. * * Copyright (C) 1999-2003 Hewlett-Packard Co * 	David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/config.h>#include <asm/asmmacro.h>#include <asm/errno.h>#include <asm/asm-offsets.h>#include <asm/sigcontext.h>#include <asm/system.h>#include <asm/unistd.h>/* * We can't easily refer to symbols inside the kernel.  To avoid full runtime relocation, * complications with the linker (which likes to create PLT stubs for branches * to targets outside the shared object) and to avoid multi-phase kernel builds, we * simply create minimalistic "patch lists" in special ELF sections. */	.section ".data.patch.fsyscall_table", "a"	.previous#define LOAD_FSYSCALL_TABLE(reg)			\[1:]	movl reg=0;					\	.xdata4 ".data.patch.fsyscall_table", 1b-.	.section ".data.patch.brl_fsys_bubble_down", "a"	.previous#define BRL_COND_FSYS_BUBBLE_DOWN(pr)			\[1:](pr)brl.cond.sptk 0;				\	.xdata4 ".data.patch.brl_fsys_bubble_down", 1b-.GLOBAL_ENTRY(__kernel_syscall_via_break)	.prologue	.altrp b6	.body	/*	 * Note: for (fast) syscall restart to work, the break instruction must be	 *	 the first one in the bundle addressed by syscall_via_break.	 */{ .mib	break 0x100000	nop.i 0	br.ret.sptk.many b6}END(__kernel_syscall_via_break)/* * On entry: *	r11 = saved ar.pfs *	r15 = system call # *	b0  = saved return address *	b6  = return address * On exit: *	r11 = saved ar.pfs *	r15 = system call # *	b0  = saved return address *	all other "scratch" registers:	undefined *	all "preserved" registers:	same as on entry */GLOBAL_ENTRY(__kernel_syscall_via_epc)	.prologue	.altrp b6	.body{	/*	 * Note: the kernel cannot assume that the first two instructions in this	 * bundle get executed.  The remaining code must be safe even if	 * they do not get executed.	 */	adds r17=-1024,r15			// A	mov r10=0				// A    default to successful syscall execution	epc					// B	causes split-issue}	;;	rsm psr.be | psr.i			// M2 (5 cyc to srlz.d)	LOAD_FSYSCALL_TABLE(r14)		// X	;;	mov r16=IA64_KR(CURRENT)		// M2 (12 cyc)	shladd r18=r17,3,r14			// A	mov r19=NR_syscalls-1			// A	;;	lfetch [r18]				// M0|1	mov r29=psr				// M2 (12 cyc)	// If r17 is a NaT, p6 will be zero	cmp.geu p6,p7=r19,r17			// A    (sysnr > 0 && sysnr < 1024+NR_syscalls)?	;;	mov r21=ar.fpsr				// M2 (12 cyc)	tnat.nz p10,p9=r15			// I0	mov.i r26=ar.pfs			// I0 (would stall anyhow due to srlz.d...)	;;	srlz.d					// M0 (forces split-issue) ensure PSR.BE==0(p6)	ld8 r18=[r18]				// M0|1	nop.i 0	;;	nop.m 0(p6)	tbit.z.unc p8,p0=r18,0			// I0 (dual-issues with "mov b7=r18"!)	nop.i 0	;;(p8)	ssm psr.i(p6)	mov b7=r18				// I0(p8)	br.dptk.many b7				// B	mov r27=ar.rsc				// M2 (12 cyc)/* * brl.cond doesn't work as intended because the linker would convert this branch * into a branch to a PLT.  Perhaps there will be a way to avoid this with some * future version of the linker.  In the meantime, we just use an indirect branch * instead. */#ifdef CONFIG_ITANIUM(p6)	add r14=-8,r14				// r14 <- addr of fsys_bubble_down entry	;;(p6)	ld8 r14=[r14]				// r14 <- fsys_bubble_down	;;(p6)	mov b7=r14(p6)	br.sptk.many b7#else	BRL_COND_FSYS_BUBBLE_DOWN(p6)#endif	ssm psr.i	mov r10=-1(p10)	mov r8=EINVAL(p9)	mov r8=ENOSYS	FSYS_RETURNEND(__kernel_syscall_via_epc)#	define ARG0_OFF		(16 + IA64_SIGFRAME_ARG0_OFFSET)#	define ARG1_OFF		(16 + IA64_SIGFRAME_ARG1_OFFSET)#	define ARG2_OFF		(16 + IA64_SIGFRAME_ARG2_OFFSET)#	define SIGHANDLER_OFF	(16 + IA64_SIGFRAME_HANDLER_OFFSET)#	define SIGCONTEXT_OFF	(16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET)#	define FLAGS_OFF	IA64_SIGCONTEXT_FLAGS_OFFSET#	define CFM_OFF		IA64_SIGCONTEXT_CFM_OFFSET#	define FR6_OFF		IA64_SIGCONTEXT_FR6_OFFSET#	define BSP_OFF		IA64_SIGCONTEXT_AR_BSP_OFFSET#	define RNAT_OFF		IA64_SIGCONTEXT_AR_RNAT_OFFSET#	define UNAT_OFF		IA64_SIGCONTEXT_AR_UNAT_OFFSET#	define FPSR_OFF		IA64_SIGCONTEXT_AR_FPSR_OFFSET#	define PR_OFF		IA64_SIGCONTEXT_PR_OFFSET#	define RP_OFF		IA64_SIGCONTEXT_IP_OFFSET#	define SP_OFF		IA64_SIGCONTEXT_R12_OFFSET#	define RBS_BASE_OFF	IA64_SIGCONTEXT_RBS_BASE_OFFSET#	define LOADRS_OFF	IA64_SIGCONTEXT_LOADRS_OFFSET#	define base0		r2#	define base1		r3	/*	 * When we get here, the memory stack looks like this:	 *	 *   +===============================+       	 *   |				     |       	 *   //	    struct sigframe          //       	 *   |				     |	 *   +-------------------------------+ <-- sp+16	 *   |      16 byte of scratch       |	 *   |            space              |	 *   +-------------------------------+ <-- sp	 *	 * The register stack looks _exactly_ the way it looked at the time the signal	 * occurred.  In other words, we're treading on a potential mine-field: each	 * incoming general register may be a NaT value (including sp, in which case the	 * process ends up dying with a SIGSEGV).	 *	 * The first thing need to do is a cover to get the registers onto the backing	 * store.  Once that is done, we invoke the signal handler which may modify some	 * of the machine state.  After returning from the signal handler, we return	 * control to the previous context by executing a sigreturn system call.  A signal	 * handler may call the rt_sigreturn() function to directly return to a given	 * sigcontext.  However, the user-level sigreturn() needs to do much more than	 * calling the rt_sigreturn() system call as it needs to unwind the stack to	 * restore preserved registers that may have been saved on the signal handler's	 * call stack.	 */#define SIGTRAMP_SAVES										\	.unwabi 3, 's';		/* mark this as a sigtramp handler (saves scratch regs) */	\	.unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */	\	.savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF;						\	.savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF;						\	.savesp pr, PR_OFF+SIGCONTEXT_OFF;     							\	.savesp rp, RP_OFF+SIGCONTEXT_OFF;							\	.savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF;							\	.vframesp SP_OFF+SIGCONTEXT_OFFGLOBAL_ENTRY(__kernel_sigtramp)	// describe the state that is active when we get here:	.prologue	SIGTRAMP_SAVES	.body	.label_state 1	adds base0=SIGHANDLER_OFF,sp	adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp	br.call.sptk.many rp=1f1:	ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF)	// get pointer to signal handler's plabel	ld8 r15=[base1]					// get address of new RBS base (or NULL)	cover				// push args in interrupted frame onto backing store	;;	cmp.ne p1,p0=r15,r0		// do we need to switch rbs? (note: pr is saved by kernel)	mov.m r9=ar.bsp			// fetch ar.bsp	.spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF(p1)	br.cond.spnt setup_rbs		// yup -> (clobbers p8, r14-r16, and r18-r20)back_from_setup_rbs:	alloc r8=ar.pfs,0,0,3,0	ld8 out0=[base0],16		// load arg0 (signum)	adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1	;;	ld8 out1=[base1]		// load arg1 (siginfop)	ld8 r10=[r17],8			// get signal handler entry point	;;	ld8 out2=[base0]		// load arg2 (sigcontextp)	ld8 gp=[r17]			// get signal handler's global pointer	adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp	;;	.spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF	st8 [base0]=r9			// save sc_ar_bsp	adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp	adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp	;;	stf.spill [base0]=f6,32	stf.spill [base1]=f7,32	;;	stf.spill [base0]=f8,32	stf.spill [base1]=f9,32	mov b6=r10	;;	stf.spill [base0]=f10,32	stf.spill [base1]=f11,32	;;	stf.spill [base0]=f12,32	stf.spill [base1]=f13,32	;;	stf.spill [base0]=f14,32	stf.spill [base1]=f15,32	br.call.sptk.many rp=b6			// call the signal handler.ret0:	adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp	;;	ld8 r15=[base0]				// fetch sc_ar_bsp	mov r14=ar.bsp	;;	cmp.ne p1,p0=r14,r15			// do we need to restore the rbs?(p1)	br.cond.spnt restore_rbs		// yup -> (clobbers r14-r18, f6 & f7)	;;back_from_restore_rbs:	adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp	adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp	;;	ldf.fill f6=[base0],32	ldf.fill f7=[base1],32	;;	ldf.fill f8=[base0],32	ldf.fill f9=[base1],32	;;	ldf.fill f10=[base0],32	ldf.fill f11=[base1],32	;;	ldf.fill f12=[base0],32	ldf.fill f13=[base1],32	;;	ldf.fill f14=[base0],32	ldf.fill f15=[base1],32	mov r15=__NR_rt_sigreturn	.restore sp				// pop .prologue	break __BREAK_SYSCALL	.prologue	SIGTRAMP_SAVESsetup_rbs:	mov ar.rsc=0				// put RSE into enforced lazy mode	;;	.save ar.rnat, r19	mov r19=ar.rnat				// save RNaT before switching backing store area	adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp	mov r18=ar.bspstore	mov ar.bspstore=r15			// switch over to new register backing store area	;;	.spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF	st8 [r14]=r19				// save sc_ar_rnat	.body	mov.m r16=ar.bsp			// sc_loadrs <- (new bsp - new bspstore) << 16	adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp	;;	invala	sub r15=r16,r15	extr.u r20=r18,3,6	;;	mov ar.rsc=0xf				// set RSE into eager mode, pl 3	cmp.eq p8,p0=63,r20	shl r15=r15,16	;;	st8 [r14]=r15				// save sc_loadrs(p8)	st8 [r18]=r19		// if bspstore points at RNaT slot, store RNaT there now	.restore sp				// pop .prologue	br.cond.sptk back_from_setup_rbs	.prologue	SIGTRAMP_SAVES	.spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF	.bodyrestore_rbs:	// On input:	//	r14 = bsp1 (bsp at the time of return from signal handler)	//	r15 = bsp0 (bsp at the time the signal occurred)	//	// Here, we need to calculate bspstore0, the value that ar.bspstore needs	// to be set to, based on bsp0 and the size of the dirty partition on	// the alternate stack (sc_loadrs >> 16).  This can be done with the	// following algorithm:	//	//  bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1));	//	// This is what the code below does.	//	alloc r2=ar.pfs,0,0,0,0			// alloc null frame	adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp	adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp	;;	ld8 r17=[r16]	ld8 r16=[r18]			// get new rnat	extr.u r18=r15,3,6	// r18 <- rse_slot_num(bsp0)	;;	mov ar.rsc=r17			// put RSE into enforced lazy mode	shr.u r17=r17,16	;;	sub r14=r14,r17		// r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16)	shr.u r17=r17,3		// r17 <- (sc_loadrs >> 19)	;;	loadrs			// restore dirty partition	extr.u r14=r14,3,6	// r14 <- rse_slot_num(bspstore1)	;;	add r14=r14,r17		// r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19)	;;	shr.u r14=r14,6		// r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40	;;	sub r14=r14,r17		// r14 <- -rse_num_regs(bspstore1, bsp1)	movl r17=0x8208208208208209	;;	add r18=r18,r14		// r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1)	setf.sig f7=r17	cmp.lt p7,p0=r14,r0	// p7 <- (r14 < 0)?	;;(p7)	adds r18=-62,r18	// delta -= 62	;;	setf.sig f6=r18	;;	xmpy.h f6=f6,f7	;;	getf.sig r17=f6	;;	add r17=r17,r18	shr r18=r18,63	;;	shr r17=r17,5	;;	sub r17=r17,r18		// r17 = delta/63	;;	add r17=r14,r17		// r17 <- delta/63 - rse_num_regs(bspstore1, bsp1)	;;	shladd r15=r17,3,r15	// r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1))	;;	mov ar.bspstore=r15			// switch back to old register backing store area	;;	mov ar.rnat=r16				// restore RNaT	mov ar.rsc=0xf				// (will be restored later on from sc_ar_rsc)	// invala not necessary as that will happen when returning to user-mode	br.cond.sptk back_from_restore_rbsEND(__kernel_sigtramp)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -