📄 efi.c
字号:
/* * Extensible Firmware Interface * * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999-2003 Hewlett-Packard Co. * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * * All EFI Runtime Services are not implemented yet as EFI only * supports physical mode addressing on SoftSDV. This is to be fixed * in a future version. --drummond 1999-07-20 * * Implemented EFI runtime services and virtual mode calls. --davidm * * Goutham Rao: <goutham.rao@intel.com> * Skip non-WB memory and ignore empty memory ranges. */#include <linux/config.h>#include <linux/module.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/types.h>#include <linux/time.h>#include <linux/efi.h>#include <asm/io.h>#include <asm/kregs.h>#include <asm/meminit.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/mca.h>#define EFI_DEBUG 0extern efi_status_t efi_call_phys (void *, ...);struct efi efi;EXPORT_SYMBOL(efi);static efi_runtime_services_t *runtime;static unsigned long mem_limit = ~0UL, max_addr = ~0UL;#define efi_call_virt(f, args...) (*(f))(args)#define STUB_GET_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \{ \ struct ia64_fpreg fr[6]; \ efi_time_cap_t *atc = NULL; \ efi_status_t ret; \ \ if (tc) \ atc = adjust_arg(tc); \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_SET_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_set_time (efi_time_t *tm) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \static efi_status_t \prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \{ \ struct ia64_fpreg fr[6]; \ efi_time_t *atm = NULL; \ efi_status_t ret; \ \ if (tm) \ atm = adjust_arg(tm); \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ enabled, atm); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_VARIABLE(prefix, adjust_arg) \static efi_status_t \prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ unsigned long *data_size, void *data) \{ \ struct ia64_fpreg fr[6]; \ u32 *aattr = NULL; \ efi_status_t ret; \ \ if (attr) \ aattr = adjust_arg(attr); \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \ adjust_arg(name), adjust_arg(vendor), aattr, \ adjust_arg(data_size), adjust_arg(data)); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \static efi_status_t \prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \ adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_SET_VARIABLE(prefix, adjust_arg) \static efi_status_t \prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \ unsigned long data_size, void *data) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \ adjust_arg(name), adjust_arg(vendor), attr, data_size, \ adjust_arg(data)); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \static efi_status_t \prefix##_get_next_high_mono_count (u32 *count) \{ \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ __va(runtime->get_next_high_mono_count), adjust_arg(count)); \ ia64_load_scratch_fpregs(fr); \ return ret; \}#define STUB_RESET_SYSTEM(prefix, adjust_arg) \static void \prefix##_reset_system (int reset_type, efi_status_t status, \ unsigned long data_size, efi_char16_t *data) \{ \ struct ia64_fpreg fr[6]; \ efi_char16_t *adata = NULL; \ \ if (data) \ adata = adjust_arg(data); \ \ ia64_save_scratch_fpregs(fr); \ efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \ reset_type, status, data_size, adata); \ /* should not return, but just in case... */ \ ia64_load_scratch_fpregs(fr); \}#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))STUB_GET_TIME(phys, phys_ptr)STUB_SET_TIME(phys, phys_ptr)STUB_GET_WAKEUP_TIME(phys, phys_ptr)STUB_SET_WAKEUP_TIME(phys, phys_ptr)STUB_GET_VARIABLE(phys, phys_ptr)STUB_GET_NEXT_VARIABLE(phys, phys_ptr)STUB_SET_VARIABLE(phys, phys_ptr)STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)STUB_RESET_SYSTEM(phys, phys_ptr)#define id(arg) argSTUB_GET_TIME(virt, id)STUB_SET_TIME(virt, id)STUB_GET_WAKEUP_TIME(virt, id)STUB_SET_WAKEUP_TIME(virt, id)STUB_GET_VARIABLE(virt, id)STUB_GET_NEXT_VARIABLE(virt, id)STUB_SET_VARIABLE(virt, id)STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)STUB_RESET_SYSTEM(virt, id)voidefi_gettimeofday (struct timespec *ts){ efi_time_t tm; memset(ts, 0, sizeof(ts)); if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) return; ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); ts->tv_nsec = tm.nanosecond;}static intis_available_memory (efi_memory_desc_t *md){ if (!(md->attribute & EFI_MEMORY_WB)) return 0; switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: return 1; } return 0;}typedef struct kern_memdesc { u64 attribute; u64 start; u64 num_pages;} kern_memdesc_t;static kern_memdesc_t *kern_memmap;static voidwalk (efi_freemem_callback_t callback, void *arg, u64 attr){ kern_memdesc_t *k; u64 start, end, voff; voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; for (k = kern_memmap; k->start != ~0UL; k++) { if (k->attribute != attr) continue; start = PAGE_ALIGN(k->start); end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; if (start < end) if ((*callback)(start + voff, end + voff, arg) < 0) return; }}/* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for OS use. */voidefi_memmap_walk (efi_freemem_callback_t callback, void *arg){ walk(callback, arg, EFI_MEMORY_WB);}/* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for uncached allocator. */voidefi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg){ walk(callback, arg, EFI_MEMORY_UC);}/* * Look for the PAL_CODE region reported by EFI and maps it using an * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor * Abstraction Layer chapter 11 in ADAG */void *efi_get_pal_addr (void){ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; int pal_code_count = 0; u64 vaddr, mask; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type != EFI_PAL_CODE) continue; if (++pal_code_count > 1) { printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", md->phys_addr); continue; } /* * The only ITLB entry in region 7 that is used is the one installed by * __start(). That entry covers a 64MB range. */ mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); vaddr = PAGE_OFFSET + md->phys_addr; /* * We must check that the PAL mapping won't overlap with the kernel * mapping. * * PAL code is guaranteed to be aligned on a power of 2 between 4k and * 256KB and that only one ITR is needed to map it. This implies that the * PAL code is always aligned on its size, i.e., the closest matching page * size supported by the TLB. Therefore PAL code is guaranteed never to * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for * now the following test is enough to determine whether or not we need a * dedicated ITR for the PAL code. */ if ((vaddr & mask) == (KERNEL_START & mask)) { printk(KERN_INFO "%s: no need to install ITR for PAL code\n", __FUNCTION__); continue; } if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) panic("Woah! PAL code size bigger than a granule!");#if EFI_DEBUG mask = ~((1 << IA64_GRANULE_SHIFT) - 1); printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", smp_processor_id(), md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);#endif return __va(md->phys_addr); } printk(KERN_WARNING "%s: no PAL-code memory-descriptor found", __FUNCTION__); return NULL;}voidefi_map_pal_code (void){ void *pal_vaddr = efi_get_pal_addr (); u64 psr; if (!pal_vaddr) return; /* * Cannot write to CRx with PSR.ic=1 */ psr = ia64_clear_ic(); ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr), pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), IA64_GRANULE_SHIFT); ia64_set_psr(psr); /* restore psr */ ia64_srlz_i();}void __initefi_init (void){ void *efi_map_start, *efi_map_end; efi_config_table_t *config_tables; efi_char16_t *c16; u64 efi_desc_size; char *cp, *end, vendor[100] = "unknown"; extern char saved_command_line[]; int i; /* it's too early to be able to use the standard kernel command line support... */ for (cp = saved_command_line; *cp; ) { if (memcmp(cp, "mem=", 4) == 0) { cp += 4; mem_limit = memparse(cp, &end); if (end != cp) break; cp = end; } else if (memcmp(cp, "max_addr=", 9) == 0) { cp += 9; max_addr = GRANULEROUNDDOWN(memparse(cp, &end)); if (end != cp) break; cp = end; } else { while (*cp != ' ' && *cp) ++cp; while (*cp == ' ') ++cp; } } if (max_addr != ~0UL) printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20); efi.systab = __va(ia64_boot_param->efi_systab); /* * Verify the EFI Table */ if (efi.systab == NULL) panic("Woah! Can't find EFI system table.\n"); if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) panic("Woah! EFI system table signature incorrect\n"); if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) printk(KERN_WARNING "Warning: EFI system table major version mismatch: " "got %d.%02d, expected %d.%02d\n", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); config_tables = __va(efi.systab->tables); /* Show what we know for posterity */ c16 = __va(efi.systab->fw_vendor); if (c16) { for (i = 0;i < (int) sizeof(vendor) && *c16; ++i) vendor[i] = *c16++; vendor[i] = '\0'; } printk(KERN_INFO "EFI v%u.%.02u by %s:", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); for (i = 0; i < (int) efi.systab->nr_tables; i++) { if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { efi.mps = __va(config_tables[i].table); printk(" MPS=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { efi.acpi20 = __va(config_tables[i].table); printk(" ACPI 2.0=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { efi.acpi = __va(config_tables[i].table); printk(" ACPI=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { efi.smbios = __va(config_tables[i].table); printk(" SMBIOS=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { efi.sal_systab = __va(config_tables[i].table); printk(" SALsystab=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { efi.hcdp = __va(config_tables[i].table); printk(" HCDP=0x%lx", config_tables[i].table); } } printk("\n"); runtime = __va(efi.systab->runtime); efi.get_time = phys_get_time; efi.set_time = phys_set_time; efi.get_wakeup_time = phys_get_wakeup_time; efi.set_wakeup_time = phys_set_wakeup_time; efi.get_variable = phys_get_variable; efi.get_next_variable = phys_get_next_variable; efi.set_variable = phys_set_variable; efi.get_next_high_mono_count = phys_get_next_high_mono_count; efi.reset_system = phys_reset_system; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size;#if EFI_DEBUG /* print EFI memory map: */ { efi_memory_desc_t *md; void *p; for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) { md = p; printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n", i, md->type, md->attribute, md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), md->num_pages >> (20 - EFI_PAGE_SHIFT)); } }#endif efi_map_pal_code(); efi_enter_virtual_mode();}voidefi_enter_virtual_mode (void){ void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; efi_status_t status; u64 efi_desc_size;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -