📄 ctx_rc2.c
字号:
/****************************************************************************
* *
* cryptlib RC2 Encryption Routines *
* Copyright Peter Gutmann 1996-2005 *
* *
****************************************************************************/
#include <stdlib.h>
#if defined( INC_ALL )
#include "crypt.h"
#include "context.h"
#include "rc2.h"
#elif defined( INC_CHILD )
#include "../crypt.h"
#include "context.h"
#include "../crypt/rc2.h"
#else
#include "crypt.h"
#include "context/context.h"
#include "crypt/rc2.h"
#endif /* Compiler-specific includes */
#ifdef USE_RC2
/* Defines to map from EAY to native naming */
#define RC2_BLOCKSIZE RC2_BLOCK
#define RC2_EXPANDED_KEYSIZE sizeof( RC2_KEY )
/* The RC2 key schedule provides a mechanism for reducing the effective key
size for export-control purposes, typically used to create 40-bit
espionage-enabled keys. BSAFE always sets the bitcount to the actual
key size (so for example for a 128-bit key it first expands it up to 1024
bits and then folds it back down again to 128 bits). Because this scheme
was copied by early S/MIME implementations (which were just BSAFE
wrappers), it's become a part of CMS/SMIME so we use it here even though
other sources do it differently */
#define effectiveKeysizeBits( keySize ) bytesToBits( keySize )
/****************************************************************************
* *
* RC2 Self-test Routines *
* *
****************************************************************************/
/* RC2 test vectors from RFC 2268 */
static const FAR_BSS struct RC2_TEST {
const BYTE key[ 16 ];
const BYTE plainText[ 8 ];
const BYTE cipherText[ 8 ];
} testRC2[] = {
{ { 0x88, 0xBC, 0xA9, 0x0E, 0x90, 0x87, 0x5A, 0x7F,
0x0F, 0x79, 0xC3, 0x84, 0x62, 0x7B, 0xAF, 0xB2 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x22, 0x69, 0x55, 0x2A, 0xB0, 0xF8, 0x5C, 0xA6 } }
};
/* Test the RC2 code against the RC2 test vectors */
static int selfTest( void )
{
const CAPABILITY_INFO *capabilityInfo = getRC2Capability();
CONTEXT_INFO contextInfo;
CONV_INFO contextData;
BYTE keyData[ RC2_EXPANDED_KEYSIZE ];
BYTE temp[ RC2_BLOCKSIZE ];
int i, status;
for( i = 0; i < sizeof( testRC2 ) / sizeof( struct RC2_TEST ); i++ )
{
staticInitContext( &contextInfo, CONTEXT_CONV, capabilityInfo,
&contextData, sizeof( CONV_INFO ), keyData );
memcpy( temp, testRC2[ i ].plainText, RC2_BLOCKSIZE );
status = capabilityInfo->initKeyFunction( &contextInfo,
testRC2[ i ].key, 16 );
if( cryptStatusOK( status ) )
status = capabilityInfo->encryptFunction( &contextInfo, temp,
RC2_BLOCKSIZE );
staticDestroyContext( &contextInfo );
if( cryptStatusError( status ) || \
memcmp( testRC2[ i ].cipherText, temp, RC2_BLOCKSIZE ) )
return( CRYPT_ERROR );
}
return( CRYPT_OK );
}
/****************************************************************************
* *
* Control Routines *
* *
****************************************************************************/
/* Return context subtype-specific information */
static int getInfo( const CAPABILITY_INFO_TYPE type, void *varParam,
const int constParam )
{
if( type == CAPABILITY_INFO_STATESIZE )
return( RC2_EXPANDED_KEYSIZE );
return( getDefaultInfo( type, varParam, constParam ) );
}
/****************************************************************************
* *
* RC2 En/Decryption Routines *
* *
****************************************************************************/
/* Encrypt/decrypt data in ECB mode */
static int encryptECB( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
int blockCount = noBytes / RC2_BLOCKSIZE;
while( blockCount-- > 0 )
{
/* Encrypt a block of data */
RC2_ecb_encrypt( buffer, buffer, rc2Key, RC2_ENCRYPT );
/* Move on to next block of data */
buffer += RC2_BLOCKSIZE;
}
return( CRYPT_OK );
}
static int decryptECB( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
int blockCount = noBytes / RC2_BLOCKSIZE;
while( blockCount-- > 0 )
{
/* Decrypt a block of data */
RC2_ecb_encrypt( buffer, buffer, rc2Key, RC2_DECRYPT );
/* Move on to next block of data */
buffer += RC2_BLOCKSIZE;
}
return( CRYPT_OK );
}
/* Encrypt/decrypt data in CBC mode */
static int encryptCBC( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
/* Encrypt the buffer of data */
RC2_cbc_encrypt( buffer, buffer, noBytes, ( RC2_KEY * ) convInfo->key,
convInfo->currentIV, RC2_ENCRYPT );
return( CRYPT_OK );
}
static int decryptCBC( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
/* Decrypt the buffer of data */
RC2_cbc_encrypt( buffer, buffer, noBytes, ( RC2_KEY * ) convInfo->key,
convInfo->currentIV, RC2_DECRYPT );
return( CRYPT_OK );
}
/* Encrypt/decrypt data in CFB mode */
static int encryptCFB( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
int i, ivCount = convInfo->ivCount;
/* If there's any encrypted material left in the IV, use it now */
if( ivCount > 0 )
{
int bytesToUse;
/* Find out how much material left in the encrypted IV we can use */
bytesToUse = RC2_BLOCKSIZE - ivCount;
if( noBytes < bytesToUse )
bytesToUse = noBytes;
/* Encrypt the data */
for( i = 0; i < bytesToUse; i++ )
buffer[ i ] ^= convInfo->currentIV[ i + ivCount ];
memcpy( convInfo->currentIV + ivCount, buffer, bytesToUse );
/* Adjust the byte count and buffer position */
noBytes -= bytesToUse;
buffer += bytesToUse;
ivCount += bytesToUse;
}
while( noBytes > 0 )
{
ivCount = ( noBytes > RC2_BLOCKSIZE ) ? RC2_BLOCKSIZE : noBytes;
/* Encrypt the IV */
RC2_ecb_encrypt( convInfo->currentIV, convInfo->currentIV, rc2Key,
RC2_ENCRYPT );
/* XOR the buffer contents with the encrypted IV */
for( i = 0; i < ivCount; i++ )
buffer[ i ] ^= convInfo->currentIV[ i ];
/* Shift the ciphertext into the IV */
memcpy( convInfo->currentIV, buffer, ivCount );
/* Move on to next block of data */
noBytes -= ivCount;
buffer += ivCount;
}
/* Remember how much of the IV is still available for use */
convInfo->ivCount = ( ivCount % RC2_BLOCKSIZE );
return( CRYPT_OK );
}
/* Decrypt data in CFB mode. Note that the transformation can be made
faster (but less clear) with temp = buffer, buffer ^= iv, iv = temp
all in one loop */
static int decryptCFB( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
BYTE temp[ RC2_BLOCKSIZE ];
int i, ivCount = convInfo->ivCount;
/* If there's any encrypted material left in the IV, use it now */
if( ivCount > 0 )
{
int bytesToUse;
/* Find out how much material left in the encrypted IV we can use */
bytesToUse = RC2_BLOCKSIZE - ivCount;
if( noBytes < bytesToUse )
bytesToUse = noBytes;
/* Decrypt the data */
memcpy( temp, buffer, bytesToUse );
for( i = 0; i < bytesToUse; i++ )
buffer[ i ] ^= convInfo->currentIV[ i + ivCount ];
memcpy( convInfo->currentIV + ivCount, temp, bytesToUse );
/* Adjust the byte count and buffer position */
noBytes -= bytesToUse;
buffer += bytesToUse;
ivCount += bytesToUse;
}
while( noBytes > 0 )
{
ivCount = ( noBytes > RC2_BLOCKSIZE ) ? RC2_BLOCKSIZE : noBytes;
/* Encrypt the IV */
RC2_ecb_encrypt( convInfo->currentIV, convInfo->currentIV, rc2Key,
RC2_ENCRYPT );
/* Save the ciphertext */
memcpy( temp, buffer, ivCount );
/* XOR the buffer contents with the encrypted IV */
for( i = 0; i < ivCount; i++ )
buffer[ i ] ^= convInfo->currentIV[ i ];
/* Shift the ciphertext into the IV */
memcpy( convInfo->currentIV, temp, ivCount );
/* Move on to next block of data */
noBytes -= ivCount;
buffer += ivCount;
}
/* Remember how much of the IV is still available for use */
convInfo->ivCount = ( ivCount % RC2_BLOCKSIZE );
/* Clear the temporary buffer */
zeroise( temp, RC2_BLOCKSIZE );
return( CRYPT_OK );
}
/* Encrypt/decrypt data in OFB mode */
static int encryptOFB( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
int i, ivCount = convInfo->ivCount;
/* If there's any encrypted material left in the IV, use it now */
if( ivCount > 0 )
{
int bytesToUse;
/* Find out how much material left in the encrypted IV we can use */
bytesToUse = RC2_BLOCKSIZE - ivCount;
if( noBytes < bytesToUse )
bytesToUse = noBytes;
/* Encrypt the data */
for( i = 0; i < bytesToUse; i++ )
buffer[ i ] ^= convInfo->currentIV[ i + ivCount ];
/* Adjust the byte count and buffer position */
noBytes -= bytesToUse;
buffer += bytesToUse;
ivCount += bytesToUse;
}
while( noBytes > 0 )
{
ivCount = ( noBytes > RC2_BLOCKSIZE ) ? RC2_BLOCKSIZE : noBytes;
/* Encrypt the IV */
RC2_ecb_encrypt( convInfo->currentIV, convInfo->currentIV, rc2Key,
RC2_ENCRYPT );
/* XOR the buffer contents with the encrypted IV */
for( i = 0; i < ivCount; i++ )
buffer[ i ] ^= convInfo->currentIV[ i ];
/* Move on to next block of data */
noBytes -= ivCount;
buffer += ivCount;
}
/* Remember how much of the IV is still available for use */
convInfo->ivCount = ( ivCount % RC2_BLOCKSIZE );
return( CRYPT_OK );
}
/* Decrypt data in OFB mode */
static int decryptOFB( CONTEXT_INFO *contextInfoPtr, BYTE *buffer,
int noBytes )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
int i, ivCount = convInfo->ivCount;
/* If there's any encrypted material left in the IV, use it now */
if( ivCount > 0 )
{
int bytesToUse;
/* Find out how much material left in the encrypted IV we can use */
bytesToUse = RC2_BLOCKSIZE - ivCount;
if( noBytes < bytesToUse )
bytesToUse = noBytes;
/* Decrypt the data */
for( i = 0; i < bytesToUse; i++ )
buffer[ i ] ^= convInfo->currentIV[ i + ivCount ];
/* Adjust the byte count and buffer position */
noBytes -= bytesToUse;
buffer += bytesToUse;
ivCount += bytesToUse;
}
while( noBytes > 0 )
{
ivCount = ( noBytes > RC2_BLOCKSIZE ) ? RC2_BLOCKSIZE : noBytes;
/* Encrypt the IV */
RC2_ecb_encrypt( convInfo->currentIV, convInfo->currentIV, rc2Key,
RC2_ENCRYPT );
/* XOR the buffer contents with the encrypted IV */
for( i = 0; i < ivCount; i++ )
buffer[ i ] ^= convInfo->currentIV[ i ];
/* Move on to next block of data */
noBytes -= ivCount;
buffer += ivCount;
}
/* Remember how much of the IV is still available for use */
convInfo->ivCount = ( ivCount % RC2_BLOCKSIZE );
return( CRYPT_OK );
}
/****************************************************************************
* *
* RC2 Key Management Routines *
* *
****************************************************************************/
/* Key schedule an RC2 key */
static int initKey( CONTEXT_INFO *contextInfoPtr, const void *key,
const int keyLength )
{
CONV_INFO *convInfo = contextInfoPtr->ctxConv;
RC2_KEY *rc2Key = ( RC2_KEY * ) convInfo->key;
/* Copy the key to internal storage */
if( convInfo->userKey != key )
memcpy( convInfo->userKey, key, keyLength );
convInfo->userKeyLength = keyLength;
RC2_set_key( rc2Key, keyLength, key, effectiveKeysizeBits( keyLength ) );
return( CRYPT_OK );
}
/****************************************************************************
* *
* Capability Access Routines *
* *
****************************************************************************/
static const CAPABILITY_INFO FAR_BSS capabilityInfo = {
CRYPT_ALGO_RC2, bitsToBytes( 64 ), "RC2",
bitsToBytes( MIN_KEYSIZE_BITS ), bitsToBytes( 128 ), bitsToBytes( 1024 ),
selfTest, getInfo, NULL, initKeyParams, initKey, NULL,
encryptECB, decryptECB, encryptCBC, decryptCBC,
encryptCFB, decryptCFB, encryptOFB, decryptOFB
};
const CAPABILITY_INFO *getRC2Capability( void )
{
return( &capabilityInfo );
}
#endif /* USE_RC2 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -