📄 kg_rsa.c
字号:
#endif /* Systems without 32 * 32 -> 64 ops */
/* We don't allow bignum e values, both because it doesn't make sense to
use them and because the tests below assume that e will fit into a
machine word */
if( eWord == BN_MASK2 )
return( FALSE );
/* Verify that e is a small prime. The easiest way to do this would be
to compare it to a set of standard values, but there'll always be some
wierdo implementation that uses a nonstandard value and that would
therefore fail the test, so we perform a quick check that just tries
dividing by all primes below 1000. In addition since in almost all
cases e will be one of a standard set of values, we don't bother with
the trial division unless it's an unusual value. This test isn't
perfect, but it'll catch obvious non-primes.
Note that OpenSSH hardcodes e = 35, which is both a suboptimal
exponent (it's less efficient that a safer value like 257 or F4)
and non-prime. The reason for this was that the original SSH used an
e relatively prime to (p-1)(q-1), choosing odd (in both senses of the
word) numbers > 31. 33 or 35 probably ended up being chosen
frequently, so it was hardcoded into OpenSSH. In order to use
OpenSSH keys, you need to comment out this test and the following
one */
if( eWord != 3 && eWord != 17 && eWord != 257 && eWord != 65537L )
{
static const FAR_BSS unsigned int smallPrimes[] = {
2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457,
461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613,
617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719,
727, 733, 739, 743, 751, 757, 761, 769,
773, 787, 797, 809, 811, 821, 823, 827,
829, 839, 853, 857, 859, 863, 877, 881,
883, 887, 907, 911, 919, 929, 937, 941,
947, 953, 967, 971, 977, 983, 991, 997,
0
};
int i;
for( i = 0; smallPrimes[ i ] != 0; i++ )
if( eWord % smallPrimes[ i ] == 0 )
return( FALSE );
}
/* Verify that gcd( ( p - 1 )( q - 1), e ) == 1. Since e is a small
prime, we can do this much more efficiently by checking that
( p - 1 ) mod e != 0 and ( q - 1 ) mod e != 0 */
if( BN_mod_word( p1, eWord ) == 0 || BN_mod_word( q1, eWord ) == 0 )
return( FALSE );
return( TRUE );
}
/* Initialise and check an RSA key. Unlike the DLP check, this function
combines the initialisation with the checking, since the two are deeply
intertwingled */
int initCheckRSAkey( CONTEXT_INFO *contextInfoPtr )
{
PKC_INFO *pkcInfo = contextInfoPtr->ctxPKC;
BIGNUM *n = &pkcInfo->rsaParam_n, *e = &pkcInfo->rsaParam_e;
BIGNUM *d = &pkcInfo->rsaParam_d, *p = &pkcInfo->rsaParam_p;
BIGNUM *q = &pkcInfo->rsaParam_q;
int bnStatus = BN_STATUS, status = CRYPT_OK;
/* Make sure that the necessary key parameters have been initialised */
if( BN_is_zero( n ) || BN_is_zero( e ) )
return( CRYPT_ARGERROR_STR1 );
if( !( contextInfoPtr->flags & CONTEXT_ISPUBLICKEY ) )
{
if( BN_is_zero( p ) || BN_is_zero( q ) )
return( CRYPT_ARGERROR_STR1 );
if( BN_is_zero( d ) && \
( BN_is_zero( &pkcInfo->rsaParam_exponent1 ) || \
BN_is_zero( &pkcInfo->rsaParam_exponent2 ) ) )
/* Either d or e1 et al must be present, d isn't needed if we
have e1 et al and e1 et al can be reconstructed from d */
return( CRYPT_ARGERROR_STR1 );
}
/* Make sure that the key paramters are valid: n > MIN_PKCSIZE_BITS,
e >= 3, |p-q| > 128 bits. Since e is commonly set to F4, we have
to special-case the check for systems where the bignum components
are 16-bit values */
if( BN_num_bits( n ) <= MIN_PKCSIZE_BITS )
return( CRYPT_ARGERROR_STR1 );
#ifdef SIXTEEN_BIT
BN_set_word( &pkcInfo->tmp1, 3 );
if( BN_cmp( e, &pkcInfo->tmp1 ) < 0 )
return( CRYPT_ARGERROR_STR1 );
#else
if( BN_get_word( e ) < 3 )
return( CRYPT_ARGERROR_STR1 );
#endif /* Systems without 32 * 32 -> 64 ops */
if( !( contextInfoPtr->flags & CONTEXT_ISPUBLICKEY ) )
{
/* Make sure that p and q differ by at least 128 bits */
CKPTR( BN_copy( &pkcInfo->tmp1, p ) );
CK( BN_sub( &pkcInfo->tmp1, &pkcInfo->tmp1, q ) );
if( bnStatusError( bnStatus ) || BN_num_bits( &pkcInfo->tmp1 ) < 128 )
return( CRYPT_ARGERROR_STR1 );
}
/* If we're not using PKCS keys that have exponent1 = d mod ( p - 1 )
and exponent2 = d mod ( q - 1 ) precalculated, evaluate them now.
If there's no u precalculated, evaluate it now */
if( !( contextInfoPtr->flags & CONTEXT_ISPUBLICKEY ) )
{
if( BN_is_zero( &pkcInfo->rsaParam_exponent1 ) )
{
BIGNUM *exponent1 = &pkcInfo->rsaParam_exponent1;
BIGNUM *exponent2 = &pkcInfo->rsaParam_exponent2;
CKPTR( BN_copy( exponent1, p ) );/* exponent1 = d mod ( p - 1 ) ) */
CK( BN_sub_word( exponent1, 1 ) );
CK( BN_mod( exponent1, d, exponent1, pkcInfo->bnCTX ) );
CKPTR( BN_copy( exponent2, q ) );/* exponent2 = d mod ( q - 1 ) ) */
CK( BN_sub_word( exponent2, 1 ) );
CK( BN_mod( exponent2, d, exponent2, pkcInfo->bnCTX ) );
if( bnStatusError( bnStatus ) )
return( getBnStatus( bnStatus ) );
}
if( BN_is_zero( &pkcInfo->rsaParam_u ) )
{
CKPTR( BN_mod_inverse( &pkcInfo->rsaParam_u, q, p,
pkcInfo->bnCTX ) );
if( bnStatusError( bnStatus ) )
return( getBnStatus( bnStatus ) );
}
}
/* Make sure that p and q are set up correctly for the CRT decryption and
precompute the Montgomery forms */
if( !( contextInfoPtr->flags & CONTEXT_ISPUBLICKEY ) )
status = fixCRTvalues( pkcInfo, TRUE );
if( cryptStatusOK( status ) )
status = getRSAMontgomery( pkcInfo,
( contextInfoPtr->flags & CONTEXT_ISPUBLICKEY ) ? \
TRUE : FALSE );
if( cryptStatusError( status ) )
return( status );
/* Now that we've got the various other values set up, perform further
validity checks on the private key */
if( !( contextInfoPtr->flags & CONTEXT_ISPUBLICKEY ) && \
!checkRSAPrivateKeyComponents( pkcInfo ) )
return( CRYPT_ARGERROR_STR1 );
pkcInfo->keySizeBits = BN_num_bits( &pkcInfo->rsaParam_n );
/* Finally, if we're using blinding, calculate the initial blinding
values */
if( contextInfoPtr->flags & CONTEXT_SIDECHANNELPROTECTION )
{
BIGNUM *k = &pkcInfo->rsaParam_blind_k;
BIGNUM *kInv = &pkcInfo->rsaParam_blind_kInv;
RESOURCE_DATA msgData;
BYTE buffer[ CRYPT_MAX_PKCSIZE + 8 ];
int noBytes = bitsToBytes( pkcInfo->keySizeBits );
/* Generate a random bignum. Since this merely has to be
unpredictable to an outsider but not cryptographically strong,
and to avoid having more crypto RNG output than necessary sitting
around in memory, we get it from the nonce PRNG rather than the
crypto one */
setMessageData( &msgData, buffer, noBytes );
status = krnlSendMessage( SYSTEM_OBJECT_HANDLE, IMESSAGE_GETATTRIBUTE_S,
&msgData, CRYPT_IATTRIBUTE_RANDOM_NONCE );
if( cryptStatusOK( status ) )
{
buffer[ 0 ] &= 255 >> ( -pkcInfo->keySizeBits & 7 );
status = ( BN_bin2bn( buffer, noBytes, k ) == NULL ) ? \
CRYPT_ERROR_MEMORY : CRYPT_OK;
}
zeroise( buffer, noBytes );
if( cryptStatusError( status ) )
return( status );
/* Set up the blinding and unblinding values */
CK( BN_mod( k, k, n, pkcInfo->bnCTX ) ); /* k = rand() mod n */
CKPTR( BN_mod_inverse( kInv, k, n, pkcInfo->bnCTX ) );
/* kInv = k^-1 mod n */
CK( BN_mod_exp_mont( k, k, e, n, pkcInfo->bnCTX,
&pkcInfo->rsaParam_mont_n ) );
/* k = k^e mod n */
if( bnStatusError( bnStatus ) )
return( getBnStatus( bnStatus ) );
}
return( status );
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -