⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ctx_dsa.c

📁 cryptlib是功能强大的安全工具集。允许开发人员快速在自己的软件中集成加密和认证服务。
💻 C
📖 第 1 页 / 共 2 页
字号:
/****************************************************************************
*																			*
*						cryptlib DSA Encryption Routines					*
*						Copyright Peter Gutmann 1995-2005					*
*																			*
****************************************************************************/

#include <stdlib.h>
#define PKC_CONTEXT		/* Indicate that we're working with PKC context */
#if defined( INC_ALL )
  #include "crypt.h"
  #include "context.h"
#elif defined( INC_CHILD )
  #include "../crypt.h"
  #include "context.h"
#else
  #include "crypt.h"
  #include "context/context.h"
#endif /* Compiler-specific includes */

/****************************************************************************
*																			*
*						Predefined DSA p, q, and g Parameters				*
*																			*
****************************************************************************/

/* We never use shared DSA parameters because they allow forgery of
   signatures on certificates.  This works as follows: Suppose that the
   certificate contains a copy of the certificate signer's DSA parameters,
   and the verifier of the certificate has a copy of the signer's public key
   but not the signer's DSA parameters (which are shared with other keys).
   If the verifier uses the DSA parameters from the certificate along with
   the signer's public key to verify the signature on the certificate, then
   an attacker can create bogus certificates by choosing a random u and
   finding its inverse v modulo q (uv is congruent to 1 modulo q).  Then
   take the certificate signer's public key g^x and compute g' = (g^x)^u.
   Then g'^v = g^x.  Using the DSA parameters p, q, g', the signer's public
   key corresponds to the private key v, which the attacker knows.  The
   attacker can then create a bogus certificate, put parameters (p, q, g')
   in it, and sign it with the DSA private key v to create an apparently
   valid certificate.  This works with the DSA OID that makes p, q, and g
   unauthenticated public parameters and y the public key, but not the one
   that makes p, q, g, and y the public key */

/****************************************************************************
*																			*
*								Algorithm Self-test							*
*																			*
****************************************************************************/

/* Test the DSA implementation using the sample key and hash from FIPS 186.
   Because a lot of the high-level encryption routines don't exist yet, we
   cheat a bit and set up a dummy encryption context with just enough
   information for the following code to work */

typedef struct {
	const int pLen; const BYTE p[ 64 ];
	const int qLen; const BYTE q[ 20 ];
	const int gLen; const BYTE g[ 64 ];
	const int xLen; const BYTE x[ 20 ];
	const int yLen; const BYTE y[ 64 ];
	} DLP_PRIVKEY;

static const FAR_BSS DLP_PRIVKEY dlpTestKey = {
	/* p */
	64,
	{ 0x8D, 0xF2, 0xA4, 0x94, 0x49, 0x22, 0x76, 0xAA,
	  0x3D, 0x25, 0x75, 0x9B, 0xB0, 0x68, 0x69, 0xCB,
	  0xEA, 0xC0, 0xD8, 0x3A, 0xFB, 0x8D, 0x0C, 0xF7,
	  0xCB, 0xB8, 0x32, 0x4F, 0x0D, 0x78, 0x82, 0xE5,
	  0xD0, 0x76, 0x2F, 0xC5, 0xB7, 0x21, 0x0E, 0xAF,
	  0xC2, 0xE9, 0xAD, 0xAC, 0x32, 0xAB, 0x7A, 0xAC,
	  0x49, 0x69, 0x3D, 0xFB, 0xF8, 0x37, 0x24, 0xC2,
	  0xEC, 0x07, 0x36, 0xEE, 0x31, 0xC8, 0x02, 0x91 },
	/* q */
	20,
	{ 0xC7, 0x73, 0x21, 0x8C, 0x73, 0x7E, 0xC8, 0xEE,
	  0x99, 0x3B, 0x4F, 0x2D, 0xED, 0x30, 0xF4, 0x8E,
	  0xDA, 0xCE, 0x91, 0x5F },
	/* g */
	64,
	{ 0x62, 0x6D, 0x02, 0x78, 0x39, 0xEA, 0x0A, 0x13,
	  0x41, 0x31, 0x63, 0xA5, 0x5B, 0x4C, 0xB5, 0x00,
	  0x29, 0x9D, 0x55, 0x22, 0x95, 0x6C, 0xEF, 0xCB,
	  0x3B, 0xFF, 0x10, 0xF3, 0x99, 0xCE, 0x2C, 0x2E,
	  0x71, 0xCB, 0x9D, 0xE5, 0xFA, 0x24, 0xBA, 0xBF,
	  0x58, 0xE5, 0xB7, 0x95, 0x21, 0x92, 0x5C, 0x9C,
	  0xC4, 0x2E, 0x9F, 0x6F, 0x46, 0x4B, 0x08, 0x8C,
	  0xC5, 0x72, 0xAF, 0x53, 0xE6, 0xD7, 0x88, 0x02 },
	/* x */
	20,
	{ 0x20, 0x70, 0xB3, 0x22, 0x3D, 0xBA, 0x37, 0x2F,
	  0xDE, 0x1C, 0x0F, 0xFC, 0x7B, 0x2E, 0x3B, 0x49,
	  0x8B, 0x26, 0x06, 0x14 },
	/* y */
	64,
	{ 0x19, 0x13, 0x18, 0x71, 0xD7, 0x5B, 0x16, 0x12,
	  0xA8, 0x19, 0xF2, 0x9D, 0x78, 0xD1, 0xB0, 0xD7,
	  0x34, 0x6F, 0x7A, 0xA7, 0x7B, 0xB6, 0x2A, 0x85,
	  0x9B, 0xFD, 0x6C, 0x56, 0x75, 0xDA, 0x9D, 0x21,
	  0x2D, 0x3A, 0x36, 0xEF, 0x16, 0x72, 0xEF, 0x66,
	  0x0B, 0x8C, 0x7C, 0x25, 0x5C, 0xC0, 0xEC, 0x74,
	  0x85, 0x8F, 0xBA, 0x33, 0xF4, 0x4C, 0x06, 0x69,
	  0x96, 0x30, 0xA7, 0x6B, 0x03, 0x0E, 0xE3, 0x33 }
	};

static const FAR_BSS BYTE shaM[] = {
	0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A,
	0xBA, 0x3E, 0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C,
	0x9C, 0xD0, 0xD8, 0x9D
	};

/* If we're doing a self-test using the FIPS 186 values we use the following
   fixed k data rather than a randomly-generated value */

static const FAR_BSS BYTE kVal[] = {
	0x35, 0x8D, 0xAD, 0x57, 0x14, 0x62, 0x71, 0x0F,
	0x50, 0xE2, 0x54, 0xCF, 0x1A, 0x37, 0x6B, 0x2B,
	0xDE, 0xAA, 0xDF, 0xBF
	};

static BOOLEAN pairwiseConsistencyTest( CONTEXT_INFO *contextInfoPtr )
	{
	const CAPABILITY_INFO *capabilityInfoPtr = getDSACapability();
	DLP_PARAMS dlpParams;
	BYTE buffer[ 128 ];
	int sigSize, status;

	/* Generate a signature with the private key */
	setDLPParams( &dlpParams, shaM, 20, buffer, 128 );
	dlpParams.inLen2 = -999;
	status = capabilityInfoPtr->signFunction( contextInfoPtr, 
						( BYTE * ) &dlpParams, sizeof( DLP_PARAMS ) );
	if( cryptStatusError( status ) )
		return( FALSE );

	/* Verify the signature with the public key */
	sigSize = dlpParams.outLen;
	setDLPParams( &dlpParams, shaM, 20, NULL, 0 );
	dlpParams.inParam2 = buffer;
	dlpParams.inLen2 = sigSize;
	status = capabilityInfoPtr->sigCheckFunction( contextInfoPtr, 
						( BYTE * ) &dlpParams, sizeof( DLP_PARAMS ) );
	return( cryptStatusOK( status ) ? TRUE : FALSE );
	}

static int selfTest( void )
	{
	const CAPABILITY_INFO *capabilityInfoPtr = getDSACapability();
	CONTEXT_INFO contextInfoPtr;
	PKC_INFO pkcInfoStorage, *pkcInfo;
	int status;

	/* Initialise the key components */
	memset( &contextInfoPtr, 0, sizeof( CONTEXT_INFO ) );
	memset( &pkcInfoStorage, 0, sizeof( PKC_INFO ) );
	contextInfoPtr.ctxPKC = pkcInfo = &pkcInfoStorage;
	BN_init( &pkcInfo->dlpParam_p );
	BN_init( &pkcInfo->dlpParam_q );
	BN_init( &pkcInfo->dlpParam_g );
	BN_init( &pkcInfo->dlpParam_y );
	BN_init( &pkcInfo->dlpParam_x );
	BN_init( &pkcInfo->tmp1 );
	BN_init( &pkcInfo->tmp2 );
	BN_init( &pkcInfo->tmp3 );
	BN_init( &pkcInfo->dlpTmp1 );
	BN_init( &pkcInfo->dlpTmp2 );
	pkcInfo->bnCTX = BN_CTX_new();
	BN_MONT_CTX_init( &pkcInfo->rsaParam_mont_p );
	contextInfoPtr.capabilityInfo = capabilityInfoPtr;
	initKeyWrite( &contextInfoPtr );	/* For calcKeyID() */
	BN_bin2bn( dlpTestKey.p, dlpTestKey.pLen, &pkcInfo->dlpParam_p );
	BN_bin2bn( dlpTestKey.q, dlpTestKey.qLen, &pkcInfo->dlpParam_q );
	BN_bin2bn( dlpTestKey.g, dlpTestKey.gLen, &pkcInfo->dlpParam_g );
	BN_bin2bn( dlpTestKey.y, dlpTestKey.yLen, &pkcInfo->dlpParam_y );
	BN_bin2bn( dlpTestKey.x, dlpTestKey.xLen, &pkcInfo->dlpParam_x );

	/* Perform the test sign/sig.check of the FIPS 186 test values */
	status = capabilityInfoPtr->initKeyFunction( &contextInfoPtr, NULL, 0 );
	if( cryptStatusOK( status ) && \
		!pairwiseConsistencyTest( &contextInfoPtr ) )
		status = CRYPT_ERROR;

	/* Clean up */
	BN_clear_free( &pkcInfo->dlpParam_p );
	BN_clear_free( &pkcInfo->dlpParam_q );
	BN_clear_free( &pkcInfo->dlpParam_g );
	BN_clear_free( &pkcInfo->dlpParam_y );
	BN_clear_free( &pkcInfo->dlpParam_x );
	BN_clear_free( &pkcInfo->tmp1 );
	BN_clear_free( &pkcInfo->tmp2 );
	BN_clear_free( &pkcInfo->tmp3 );
	BN_clear_free( &pkcInfo->dlpTmp1 );
	BN_clear_free( &pkcInfo->dlpTmp2 );
	BN_CTX_free( pkcInfo->bnCTX );
	BN_MONT_CTX_free( &pkcInfo->dlpParam_mont_p );
	zeroise( &pkcInfoStorage, sizeof( PKC_INFO ) );
	zeroise( &contextInfoPtr, sizeof( CONTEXT_INFO ) );

	return( status );
	}

/****************************************************************************
*																			*
*							Create/Check a Signature						*
*																			*
****************************************************************************/

/* Since DSA signature generation produces two values and the cryptEncrypt()
   model only provides for passing a byte string in and out (or, more
   specifically, the internal bignum data can't be exported to the outside
   world), we need to encode the resulting data into a flat format.  This is
   done by encoding the output as an X9.31 Dss-Sig record:

	Dss-Sig ::= SEQUENCE {
		r	INTEGER,
		s	INTEGER
		}

   The input is the 160-bit hash, usually SHA but possibly also RIPEMD-160 */

/* The size of each DSA signature component - 160 bits */

#define DSA_SIGPART_SIZE	20

/* Sign a single block of data  */

static int sign( CONTEXT_INFO *contextInfoPtr, BYTE *buffer, int noBytes )
	{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -