📄 clusterer.java
字号:
/* Copyright (C) 2002 Dept. of Computer Science, Univ. of Massachusetts, AmherstThis file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).http://www.cs.umass.edu/~mccallum/malletThis program toolkit free software; you can redistribute it and/ormodify it under the terms of the GNU General Public License aspublished by the Free Software Foundation; either version 2 of theLicense, or (at your option) any later version.This program is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For moredetails see the GNU General Public License and the file README-LEGAL.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place - Suite 330, Boston, MA02111-1307, USA. *//** @author Ben Wellner*/package edu.umass.cs.mallet.projects.seg_plus_coref.clustering;import salvo.jesus.graph.*;import edu.umass.cs.mallet.projects.seg_plus_coref.graphs.*;import edu.umass.cs.mallet.projects.seg_plus_coref.clustering.*;import java.util.*;public class Clusterer { MappedGraph mGraph; WeightedGraph graph; public Clusterer (MappedGraph graph) { mGraph = graph; this.graph = graph.getGraph(); } public Clusterer () { } public void setGraph (MappedGraph graph) { this.mGraph = graph; this.graph = graph.getGraph(); } public MappedGraph getMappedGraph () { return mGraph; } public WeightedGraph getGraph () { return graph; } /* public Clustering getClustering (MappedGraph graph) { setGraph(graph); return getClustering(); }*/ public Clustering getClusteringGreedily () { MinimizeDisagreementsClustering minClustering = null; // clustering algorithm here if (mGraph != null) { minClustering = new MinimizeDisagreementsClustering(mGraph,(double)1/44); } else { return null; } Clustering cl = minClustering.getClusteringGreedily(); System.out.println("Number of clusters: " + cl.size()); return (Clustering)new GraphClustering (graph, cl); } public Clustering getClustering (Clustering prevClustering) { MinimizeDisagreementsClustering minClustering = null; // clustering algorithm here if (mGraph != null) { minClustering = new MinimizeDisagreementsClustering(mGraph,(double)1/44); } else { return null; } Clustering cl = null; if (prevClustering != null) cl = minClustering.getClustering(prevClustering.getSelectVertices()); else cl = minClustering.getClustering(null); return (Clustering)new GraphClustering (graph, cl); } public Clustering getClustering () // might need some parameters here ... { return getClustering(null); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -