📄 incrementalclassifiertrainer.java
字号:
package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.types.InstanceList;/** * Adds the notion of incremental training to a ClassifierTrainer, through the * availability of incrementalTrain() methods, which * parallel the train() methods. * <p> * A train method on an incrmental trainer behaves exactly as the train * method on a non incremental trainer. Train() is stateless; all calls * to train() are independent of each other. * For incremental training, the user should call only the incrementalTrain() * methods, which maintain state between calls. * * */public abstract class IncrementalClassifierTrainer extends ClassifierTrainer { /** Return a new classifier tuned from an instanceList @param trainingSet examples used to set parameters. */ public Classifier incrementalTrain (InstanceList trainingSet) { return this.incrementalTrain (trainingSet, null); } /** Return a new classifier tuned using two arguments. @param trainingSet examples used to set parameters. @param validationSet examples used to tune meta-parameters. May be null. */ public Classifier incrementalTrain (InstanceList trainingSet, InstanceList validationSet) { return this.incrementalTrain (trainingSet, validationSet, null); } /** Return a new classifier tuned using three arguments. @param trainingSet examples used to set parameters. @param validationSet examples used to tune meta-parameters. May be null. @param testSet examples not examined at all for training, but passed on to diagnostic routines. May be null. */ public Classifier incrementalTrain (InstanceList trainingSet, InstanceList validationSet, InstanceList testSet) { return this.incrementalTrain (trainingSet, validationSet, testSet, null, null); } /** Return a new classifier tuned using four arguments. @param trainingSet examples used to set parameters. @param validationSet examples used to tune meta-parameters. May be null. @param testSet examples not examined at all for training, but passed on to diagnostic routines. May be null. @param evaluator May be null */ public Classifier incrementalTrain (InstanceList trainingSet, InstanceList validationSet, InstanceList testSet, ClassifierEvaluating evaluator) { return this.incrementalTrain (trainingSet, validationSet, testSet, evaluator, null); } /** Return a new classifier tuned using the five arguments. @param trainingSet examples used to set parameters. @param validationSet examples used to tune meta-parameters. May be null. @param testSet examples not examined at all for training, but passed on to diagnostic routines. May be null. @param evaluator May be null @param initialClassifier training process may start from here. The parameters of the initialClassifier are not modified. May be null. */ public abstract Classifier incrementalTrain (InstanceList trainingSet, InstanceList validationSet, InstanceList testSet, ClassifierEvaluating evaluator, Classifier initialClassifier); /** * Throw away the internal state of the trainer as set by incrementalTrain(). * Incremental trainers must be explicitly reset between a call * of incrementalTrain() and a call to train(). */ public abstract void reset();}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -