⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 incrementalclassifiertrainer.java

📁 这是一个matlab的java实现。里面有许多内容。请大家慢慢捉摸。
💻 JAVA
字号:
package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.types.InstanceList;/** * Adds the notion of incremental training to a ClassifierTrainer, through the * availability of incrementalTrain() methods, which * parallel the train() methods. * <p> * A train method on an incrmental trainer behaves exactly as the train * method on a non incremental trainer.  Train() is stateless; all calls * to train() are independent of each other. * For incremental training, the user should call only the incrementalTrain() * methods, which maintain state between calls. * * */public abstract class IncrementalClassifierTrainer extends ClassifierTrainer {    /** Return a new classifier tuned from an instanceList            @param trainingSet examples used to set parameters.    */    public Classifier incrementalTrain (InstanceList trainingSet)    {        return this.incrementalTrain (trainingSet, null);    }    /** Return a new classifier tuned using  two arguments.            @param trainingSet examples used to set parameters.            @param validationSet examples used to tune meta-parameters.  May be null.    */    public Classifier incrementalTrain (InstanceList trainingSet,                                        InstanceList validationSet)    {        return this.incrementalTrain (trainingSet, validationSet, null);    }    /** Return a new classifier tuned using  three arguments.            @param trainingSet examples used to set parameters.            @param validationSet examples used to tune meta-parameters.  May be null.            @param testSet examples not examined at all for training, but passed on to diagnostic routines.  May be null.    */    public Classifier incrementalTrain (InstanceList trainingSet,                                        InstanceList validationSet,                                        InstanceList testSet)    {        return this.incrementalTrain (trainingSet, validationSet, testSet, null, null);    }    /** Return a new classifier tuned using  four arguments.            @param trainingSet examples used to set parameters.            @param validationSet examples used to tune meta-parameters.  May be null.            @param testSet examples not examined at all for training, but passed on to diagnostic routines.  May be null.            @param evaluator May be null    */    public Classifier incrementalTrain (InstanceList trainingSet,                                        InstanceList validationSet,                                        InstanceList testSet,                                        ClassifierEvaluating evaluator)    {        return this.incrementalTrain (trainingSet, validationSet, testSet, evaluator, null);    }    /** Return a new classifier tuned using the five arguments.            @param trainingSet examples used to set parameters.            @param validationSet examples used to tune meta-parameters.  May be null.            @param testSet examples not examined at all for training, but passed on to diagnostic routines.  May be null.            @param evaluator May be null            @param initialClassifier training process may start from here.  The parameters of the initialClassifier are not modified.  May be null.    */    public abstract Classifier incrementalTrain (InstanceList trainingSet,                                                 InstanceList validationSet,                                                 InstanceList testSet,                                                 ClassifierEvaluating evaluator,                                                 Classifier initialClassifier);    /**     *  Throw away the internal state of the trainer as set by incrementalTrain().     *  Incremental trainers must be explicitly reset between a call     *  of incrementalTrain() and a call to train().     */    public abstract void reset();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -