📄 constrainedforwardbackwardconfidenceestimator.java
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept. This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit). http://www.cs.umass.edu/~mccallum/mallet This software is provided under the terms of the Common Public License, version 1.0, as published by http://www.opensource.org. For further information, see the file `LICENSE' included with this distribution. *//** @author Aron Culotta <a href="mailto:culotta@cs.umass.edu">culotta@cs.umass.edu</a>*/package edu.umass.cs.mallet.base.fst.confidence;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.fst.*;/** * Estimates the confidence of a {@link Segment} extracted by a {@link * Transducer} by performing a "constrained lattice" * calculation. Essentially, this sums all possible ways this segment * could have been extracted and normalizes. */public class ConstrainedForwardBackwardConfidenceEstimator extends TransducerConfidenceEstimator{ public ConstrainedForwardBackwardConfidenceEstimator (Transducer model) { this.model = model; } /** Calculates the confidence in the tagging of a {@link Segment}. @return 0-1 confidence value. higher = more confident. */ public double estimateConfidenceFor (Segment segment) { Sequence predSequence = segment.getPredicted (); Sequence input = segment.getInput (); Transducer.Lattice lattice = model.forwardBackward (input); // constrained lattice Transducer.Lattice constrainedLattice = model.forwardBackward (input, null, segment, predSequence); double latticeCost = lattice.getCost (); double constrainedLatticeCost = constrainedLattice.getCost (); double confidence = Math.exp (latticeCost - constrainedLatticeCost); //System.err.println ("confidence: " + confidence); return confidence; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -